
Hacking in C 2020
The C programming language
Thom Wiggers

1

Table of Contents

Introduction

Undefined behaviour

Abstracting away from bytes in memory

Integer representations

2

Table of Contents

Introduction

Undefined behaviour

Abstracting away from bytes in memory

Integer representations

3

The C programming language

• Invented by Dennis Ritchie in 1972–1973

• Not one of the first programming languages: ALGOL for example is
older.

– Another predecessor is B.

• Closely tied to the development of the Unix operating system
• Unix and Linux are mostly written in C
• Compilers are widely available for many, many, many platforms
• Still in development: latest release of standard is C18. Popular

versions are C99 and C11.
• Many compilers implement extensions, leading to versions such as

gnu18, gnu11.
• Default version in GCC gnu11

4

The C programming language

• Invented by Dennis Ritchie in 1972–1973
• Not one of the first programming languages: ALGOL for example is

older.

– Another predecessor is B.
• Closely tied to the development of the Unix operating system
• Unix and Linux are mostly written in C
• Compilers are widely available for many, many, many platforms
• Still in development: latest release of standard is C18. Popular

versions are C99 and C11.
• Many compilers implement extensions, leading to versions such as

gnu18, gnu11.
• Default version in GCC gnu11

4

The C programming language

• Invented by Dennis Ritchie in 1972–1973
• Not one of the first programming languages: ALGOL for example is

older.
– Another predecessor is B.

• Closely tied to the development of the Unix operating system
• Unix and Linux are mostly written in C
• Compilers are widely available for many, many, many platforms
• Still in development: latest release of standard is C18. Popular

versions are C99 and C11.
• Many compilers implement extensions, leading to versions such as

gnu18, gnu11.
• Default version in GCC gnu11

4

The C programming language

• Invented by Dennis Ritchie in 1972–1973
• Not one of the first programming languages: ALGOL for example is

older.
– Another predecessor is B.

• Closely tied to the development of the Unix operating system

• Unix and Linux are mostly written in C
• Compilers are widely available for many, many, many platforms
• Still in development: latest release of standard is C18. Popular

versions are C99 and C11.
• Many compilers implement extensions, leading to versions such as

gnu18, gnu11.
• Default version in GCC gnu11

4

The C programming language

• Invented by Dennis Ritchie in 1972–1973
• Not one of the first programming languages: ALGOL for example is

older.
– Another predecessor is B.

• Closely tied to the development of the Unix operating system
• Unix and Linux are mostly written in C

• Compilers are widely available for many, many, many platforms
• Still in development: latest release of standard is C18. Popular

versions are C99 and C11.
• Many compilers implement extensions, leading to versions such as

gnu18, gnu11.
• Default version in GCC gnu11

4

The C programming language

• Invented by Dennis Ritchie in 1972–1973
• Not one of the first programming languages: ALGOL for example is

older.
– Another predecessor is B.

• Closely tied to the development of the Unix operating system
• Unix and Linux are mostly written in C
• Compilers are widely available for many, many, many platforms

• Still in development: latest release of standard is C18. Popular
versions are C99 and C11.

• Many compilers implement extensions, leading to versions such as
gnu18, gnu11.

• Default version in GCC gnu11

4

The C programming language

• Invented by Dennis Ritchie in 1972–1973
• Not one of the first programming languages: ALGOL for example is

older.
– Another predecessor is B.

• Closely tied to the development of the Unix operating system
• Unix and Linux are mostly written in C
• Compilers are widely available for many, many, many platforms
• Still in development: latest release of standard is C18. Popular

versions are C99 and C11.

• Many compilers implement extensions, leading to versions such as
gnu18, gnu11.

• Default version in GCC gnu11

4

The C programming language

• Invented by Dennis Ritchie in 1972–1973
• Not one of the first programming languages: ALGOL for example is

older.
– Another predecessor is B.

• Closely tied to the development of the Unix operating system
• Unix and Linux are mostly written in C
• Compilers are widely available for many, many, many platforms
• Still in development: latest release of standard is C18. Popular

versions are C99 and C11.
• Many compilers implement extensions, leading to versions such as

gnu18, gnu11.

• Default version in GCC gnu11

4

The C programming language

• Invented by Dennis Ritchie in 1972–1973
• Not one of the first programming languages: ALGOL for example is

older.
– Another predecessor is B.

• Closely tied to the development of the Unix operating system
• Unix and Linux are mostly written in C
• Compilers are widely available for many, many, many platforms
• Still in development: latest release of standard is C18. Popular

versions are C99 and C11.
• Many compilers implement extensions, leading to versions such as

gnu18, gnu11.
• Default version in GCC gnu11

4

Programming for hardware

• Initially C was co-developed with Unix

• Unix is an operating system: main job is managing hardware
• C was used to replace the assembly code and implement new

sofware for Unix
• Writing code in assembly:

– Almost no abstraction
– Full control
– No types, no bounds checking: everything is just bytes to the

CPU
– Direct access to CPU and memory
– Choice of instructions, register allocation left to programmer
– Need to do everything from scratch for different CPUs
– If a microarchitecture is released with new features, may need

to re-implement parts of the code

5

Programming for hardware

• Initially C was co-developed with Unix
• Unix is an operating system: main job is managing hardware

• C was used to replace the assembly code and implement new
sofware for Unix

• Writing code in assembly:

– Almost no abstraction
– Full control
– No types, no bounds checking: everything is just bytes to the

CPU
– Direct access to CPU and memory
– Choice of instructions, register allocation left to programmer
– Need to do everything from scratch for different CPUs
– If a microarchitecture is released with new features, may need

to re-implement parts of the code

5

Programming for hardware

• Initially C was co-developed with Unix
• Unix is an operating system: main job is managing hardware
• C was used to replace the assembly code and implement new

sofware for Unix

• Writing code in assembly:

– Almost no abstraction
– Full control
– No types, no bounds checking: everything is just bytes to the

CPU
– Direct access to CPU and memory
– Choice of instructions, register allocation left to programmer
– Need to do everything from scratch for different CPUs
– If a microarchitecture is released with new features, may need

to re-implement parts of the code

5

Programming for hardware

• Initially C was co-developed with Unix
• Unix is an operating system: main job is managing hardware
• C was used to replace the assembly code and implement new

sofware for Unix
• Writing code in assembly:

– Almost no abstraction
– Full control
– No types, no bounds checking: everything is just bytes to the

CPU
– Direct access to CPU and memory
– Choice of instructions, register allocation left to programmer
– Need to do everything from scratch for different CPUs
– If a microarchitecture is released with new features, may need

to re-implement parts of the code

5

Programming for hardware

• Initially C was co-developed with Unix
• Unix is an operating system: main job is managing hardware
• C was used to replace the assembly code and implement new

sofware for Unix
• Writing code in assembly:

– Almost no abstraction

– Full control
– No types, no bounds checking: everything is just bytes to the

CPU
– Direct access to CPU and memory
– Choice of instructions, register allocation left to programmer
– Need to do everything from scratch for different CPUs
– If a microarchitecture is released with new features, may need

to re-implement parts of the code

5

Programming for hardware

• Initially C was co-developed with Unix
• Unix is an operating system: main job is managing hardware
• C was used to replace the assembly code and implement new

sofware for Unix
• Writing code in assembly:

– Almost no abstraction
– Full control

– No types, no bounds checking: everything is just bytes to the
CPU

– Direct access to CPU and memory
– Choice of instructions, register allocation left to programmer
– Need to do everything from scratch for different CPUs
– If a microarchitecture is released with new features, may need

to re-implement parts of the code

5

Programming for hardware

• Initially C was co-developed with Unix
• Unix is an operating system: main job is managing hardware
• C was used to replace the assembly code and implement new

sofware for Unix
• Writing code in assembly:

– Almost no abstraction
– Full control
– No types, no bounds checking: everything is just bytes to the

CPU

– Direct access to CPU and memory
– Choice of instructions, register allocation left to programmer
– Need to do everything from scratch for different CPUs
– If a microarchitecture is released with new features, may need

to re-implement parts of the code

5

Programming for hardware

• Initially C was co-developed with Unix
• Unix is an operating system: main job is managing hardware
• C was used to replace the assembly code and implement new

sofware for Unix
• Writing code in assembly:

– Almost no abstraction
– Full control
– No types, no bounds checking: everything is just bytes to the

CPU
– Direct access to CPU and memory

– Choice of instructions, register allocation left to programmer
– Need to do everything from scratch for different CPUs
– If a microarchitecture is released with new features, may need

to re-implement parts of the code

5

Programming for hardware

• Initially C was co-developed with Unix
• Unix is an operating system: main job is managing hardware
• C was used to replace the assembly code and implement new

sofware for Unix
• Writing code in assembly:

– Almost no abstraction
– Full control
– No types, no bounds checking: everything is just bytes to the

CPU
– Direct access to CPU and memory
– Choice of instructions, register allocation left to programmer

– Need to do everything from scratch for different CPUs
– If a microarchitecture is released with new features, may need

to re-implement parts of the code

5

Programming for hardware

• Initially C was co-developed with Unix
• Unix is an operating system: main job is managing hardware
• C was used to replace the assembly code and implement new

sofware for Unix
• Writing code in assembly:

– Almost no abstraction
– Full control
– No types, no bounds checking: everything is just bytes to the

CPU
– Direct access to CPU and memory
– Choice of instructions, register allocation left to programmer
– Need to do everything from scratch for different CPUs

– If a microarchitecture is released with new features, may need
to re-implement parts of the code

5

Programming for hardware

• Initially C was co-developed with Unix
• Unix is an operating system: main job is managing hardware
• C was used to replace the assembly code and implement new

sofware for Unix
• Writing code in assembly:

– Almost no abstraction
– Full control
– No types, no bounds checking: everything is just bytes to the

CPU
– Direct access to CPU and memory
– Choice of instructions, register allocation left to programmer
– Need to do everything from scratch for different CPUs
– If a microarchitecture is released with new features, may need

to re-implement parts of the code

5

Comparing C to assembly code

• C takes away some control from the programmer

• C is portable (in theory)

– In practice, different compilers may not be fully compatible
(Microsoft vs GCC)

– You need to stay away from hardware-specific features and
hardware-specific assumptions

– You need to stay away from implementation-defined behaviour
(turn on at least -pedantic on GCC)

• Compiler can translate C code to the target CPU
• Compiler can optimize code for you, for the target microarchitecture
• C still gives raw access to memory
• Gives you types to detect some errors, but lets you convert between

any of them, often even implicitly.

6

Comparing C to assembly code

• C takes away some control from the programmer
• C is portable (in theory)

– In practice, different compilers may not be fully compatible
(Microsoft vs GCC)

– You need to stay away from hardware-specific features and
hardware-specific assumptions

– You need to stay away from implementation-defined behaviour
(turn on at least -pedantic on GCC)

• Compiler can translate C code to the target CPU
• Compiler can optimize code for you, for the target microarchitecture
• C still gives raw access to memory
• Gives you types to detect some errors, but lets you convert between

any of them, often even implicitly.

6

Comparing C to assembly code

• C takes away some control from the programmer
• C is portable (in theory)

– In practice, different compilers may not be fully compatible
(Microsoft vs GCC)

– You need to stay away from hardware-specific features and
hardware-specific assumptions

– You need to stay away from implementation-defined behaviour
(turn on at least -pedantic on GCC)

• Compiler can translate C code to the target CPU
• Compiler can optimize code for you, for the target microarchitecture
• C still gives raw access to memory
• Gives you types to detect some errors, but lets you convert between

any of them, often even implicitly.

6

Comparing C to assembly code

• C takes away some control from the programmer
• C is portable (in theory)

– In practice, different compilers may not be fully compatible
(Microsoft vs GCC)

– You need to stay away from hardware-specific features and
hardware-specific assumptions

– You need to stay away from implementation-defined behaviour
(turn on at least -pedantic on GCC)

• Compiler can translate C code to the target CPU
• Compiler can optimize code for you, for the target microarchitecture
• C still gives raw access to memory
• Gives you types to detect some errors, but lets you convert between

any of them, often even implicitly.

6

Comparing C to assembly code

• C takes away some control from the programmer
• C is portable (in theory)

– In practice, different compilers may not be fully compatible
(Microsoft vs GCC)

– You need to stay away from hardware-specific features and
hardware-specific assumptions

– You need to stay away from implementation-defined behaviour
(turn on at least -pedantic on GCC)

• Compiler can translate C code to the target CPU
• Compiler can optimize code for you, for the target microarchitecture
• C still gives raw access to memory
• Gives you types to detect some errors, but lets you convert between

any of them, often even implicitly.

6

Comparing C to assembly code

• C takes away some control from the programmer
• C is portable (in theory)

– In practice, different compilers may not be fully compatible
(Microsoft vs GCC)

– You need to stay away from hardware-specific features and
hardware-specific assumptions

– You need to stay away from implementation-defined behaviour
(turn on at least -pedantic on GCC)

• Compiler can translate C code to the target CPU

• Compiler can optimize code for you, for the target microarchitecture
• C still gives raw access to memory
• Gives you types to detect some errors, but lets you convert between

any of them, often even implicitly.

6

Comparing C to assembly code

• C takes away some control from the programmer
• C is portable (in theory)

– In practice, different compilers may not be fully compatible
(Microsoft vs GCC)

– You need to stay away from hardware-specific features and
hardware-specific assumptions

– You need to stay away from implementation-defined behaviour
(turn on at least -pedantic on GCC)

• Compiler can translate C code to the target CPU
• Compiler can optimize code for you, for the target microarchitecture

• C still gives raw access to memory
• Gives you types to detect some errors, but lets you convert between

any of them, often even implicitly.

6

Comparing C to assembly code

• C takes away some control from the programmer
• C is portable (in theory)

– In practice, different compilers may not be fully compatible
(Microsoft vs GCC)

– You need to stay away from hardware-specific features and
hardware-specific assumptions

– You need to stay away from implementation-defined behaviour
(turn on at least -pedantic on GCC)

• Compiler can translate C code to the target CPU
• Compiler can optimize code for you, for the target microarchitecture
• C still gives raw access to memory

• Gives you types to detect some errors, but lets you convert between
any of them, often even implicitly.

6

Comparing C to assembly code

• C takes away some control from the programmer
• C is portable (in theory)

– In practice, different compilers may not be fully compatible
(Microsoft vs GCC)

– You need to stay away from hardware-specific features and
hardware-specific assumptions

– You need to stay away from implementation-defined behaviour
(turn on at least -pedantic on GCC)

• Compiler can translate C code to the target CPU
• Compiler can optimize code for you, for the target microarchitecture
• C still gives raw access to memory
• Gives you types to detect some errors, but lets you convert between

any of them, often even implicitly.

6

Comparing C to C++

• C++ was originally developed from C

• C++ is not a strict superset of C.
int *x = malloc(sizeof(int) *10); is valid C, but not C++!
In C++ you will need to cast the void* pointer (but you should use
new in C++).

• It is easy to write some code in C and then call it from C++ code,
however.

– Commonly used when high-performance code is written in C
and a nice-to-use wrapper is written in C++.

– Not restricted to C++, many languages have such a foreign
function interface to link to libraries compiled from C.

– For example: Numpy (Python) implements many core maths
operations in C for performance reasons.

7

Comparing C to C++

• C++ was originally developed from C
• C++ is not a strict superset of C.

int *x = malloc(sizeof(int) *10); is valid C, but not C++!
In C++ you will need to cast the void* pointer (but you should use
new in C++).

• It is easy to write some code in C and then call it from C++ code,
however.

– Commonly used when high-performance code is written in C
and a nice-to-use wrapper is written in C++.

– Not restricted to C++, many languages have such a foreign
function interface to link to libraries compiled from C.

– For example: Numpy (Python) implements many core maths
operations in C for performance reasons.

7

Comparing C to C++

• C++ was originally developed from C
• C++ is not a strict superset of C.

int *x = malloc(sizeof(int) *10); is valid C, but not C++!
In C++ you will need to cast the void* pointer (but you should use
new in C++).

• It is easy to write some code in C and then call it from C++ code,
however.

– Commonly used when high-performance code is written in C
and a nice-to-use wrapper is written in C++.

– Not restricted to C++, many languages have such a foreign
function interface to link to libraries compiled from C.

– For example: Numpy (Python) implements many core maths
operations in C for performance reasons.

7

Comparing C to C++

• C++ was originally developed from C
• C++ is not a strict superset of C.

int *x = malloc(sizeof(int) *10); is valid C, but not C++!
In C++ you will need to cast the void* pointer (but you should use
new in C++).

• It is easy to write some code in C and then call it from C++ code,
however.
– Commonly used when high-performance code is written in C

and a nice-to-use wrapper is written in C++.

– Not restricted to C++, many languages have such a foreign
function interface to link to libraries compiled from C.

– For example: Numpy (Python) implements many core maths
operations in C for performance reasons.

7

Comparing C to C++

• C++ was originally developed from C
• C++ is not a strict superset of C.

int *x = malloc(sizeof(int) *10); is valid C, but not C++!
In C++ you will need to cast the void* pointer (but you should use
new in C++).

• It is easy to write some code in C and then call it from C++ code,
however.
– Commonly used when high-performance code is written in C

and a nice-to-use wrapper is written in C++.
– Not restricted to C++, many languages have such a foreign

function interface to link to libraries compiled from C.

– For example: Numpy (Python) implements many core maths
operations in C for performance reasons.

7

Comparing C to C++

• C++ was originally developed from C
• C++ is not a strict superset of C.

int *x = malloc(sizeof(int) *10); is valid C, but not C++!
In C++ you will need to cast the void* pointer (but you should use
new in C++).

• It is easy to write some code in C and then call it from C++ code,
however.
– Commonly used when high-performance code is written in C

and a nice-to-use wrapper is written in C++.
– Not restricted to C++, many languages have such a foreign

function interface to link to libraries compiled from C.
– For example: Numpy (Python) implements many core maths

operations in C for performance reasons.

7

Table of Contents

Introduction

Undefined behaviour

Abstracting away from bytes in memory

Integer representations

8

Syntax and semantics

Syntax of a programming language
• Spelling and grammar rules
• Defines the language of valid programs
• Syntax errors are caught by the compiler
• Classical example: forget a ; at the end of a line

Semantics of a programming language
• Defines the meaning of a valid program
• In many languages semantics are fully specified
• Runtime errors (exceptions) are part of the semantics
• C is not fully specified!

9

Syntax and semantics

Syntax of a programming language
• Spelling and grammar rules
• Defines the language of valid programs
• Syntax errors are caught by the compiler
• Classical example: forget a ; at the end of a line

Semantics of a programming language
• Defines the meaning of a valid program
• In many languages semantics are fully specified
• Runtime errors (exceptions) are part of the semantics
• C is not fully specified!

9

Implementation-defined behaviour

• Some behaviour is unspecified by the standard and was left to be
specified by the compiler.

• Reason: simplify compiler implementation and allow compilers to
optimize things better.

• Often such behaviour is also specific to the hardware that you’re
running the software on

• Examples:

– Order of subexpression evaluation: f(g(), h()).
– Sizes of types (more later)
– Signedness of char
– Number of bits in a byte

• For most of this course, we assume GCC 7+ on a 64-bit AMD64 cpu.

10

Implementation-defined behaviour

• Some behaviour is unspecified by the standard and was left to be
specified by the compiler.

• Reason: simplify compiler implementation and allow compilers to
optimize things better.

• Often such behaviour is also specific to the hardware that you’re
running the software on

• Examples:

– Order of subexpression evaluation: f(g(), h()).
– Sizes of types (more later)
– Signedness of char
– Number of bits in a byte

• For most of this course, we assume GCC 7+ on a 64-bit AMD64 cpu.

10

Implementation-defined behaviour

• Some behaviour is unspecified by the standard and was left to be
specified by the compiler.

• Reason: simplify compiler implementation and allow compilers to
optimize things better.

• Often such behaviour is also specific to the hardware that you’re
running the software on

• Examples:

– Order of subexpression evaluation: f(g(), h()).
– Sizes of types (more later)
– Signedness of char
– Number of bits in a byte

• For most of this course, we assume GCC 7+ on a 64-bit AMD64 cpu.

10

Implementation-defined behaviour

• Some behaviour is unspecified by the standard and was left to be
specified by the compiler.

• Reason: simplify compiler implementation and allow compilers to
optimize things better.

• Often such behaviour is also specific to the hardware that you’re
running the software on

• Examples:

– Order of subexpression evaluation: f(g(), h()).
– Sizes of types (more later)
– Signedness of char
– Number of bits in a byte

• For most of this course, we assume GCC 7+ on a 64-bit AMD64 cpu.

10

Implementation-defined behaviour

• Some behaviour is unspecified by the standard and was left to be
specified by the compiler.

• Reason: simplify compiler implementation and allow compilers to
optimize things better.

• Often such behaviour is also specific to the hardware that you’re
running the software on

• Examples:
– Order of subexpression evaluation: f(g(), h()).

– Sizes of types (more later)
– Signedness of char
– Number of bits in a byte

• For most of this course, we assume GCC 7+ on a 64-bit AMD64 cpu.

10

Implementation-defined behaviour

• Some behaviour is unspecified by the standard and was left to be
specified by the compiler.

• Reason: simplify compiler implementation and allow compilers to
optimize things better.

• Often such behaviour is also specific to the hardware that you’re
running the software on

• Examples:
– Order of subexpression evaluation: f(g(), h()).
– Sizes of types (more later)

– Signedness of char
– Number of bits in a byte

• For most of this course, we assume GCC 7+ on a 64-bit AMD64 cpu.

10

Implementation-defined behaviour

• Some behaviour is unspecified by the standard and was left to be
specified by the compiler.

• Reason: simplify compiler implementation and allow compilers to
optimize things better.

• Often such behaviour is also specific to the hardware that you’re
running the software on

• Examples:
– Order of subexpression evaluation: f(g(), h()).
– Sizes of types (more later)
– Signedness of char

– Number of bits in a byte
• For most of this course, we assume GCC 7+ on a 64-bit AMD64 cpu.

10

Implementation-defined behaviour

• Some behaviour is unspecified by the standard and was left to be
specified by the compiler.

• Reason: simplify compiler implementation and allow compilers to
optimize things better.

• Often such behaviour is also specific to the hardware that you’re
running the software on

• Examples:
– Order of subexpression evaluation: f(g(), h()).
– Sizes of types (more later)
– Signedness of char
– Number of bits in a byte

• For most of this course, we assume GCC 7+ on a 64-bit AMD64 cpu.

10

Implementation-defined behaviour

• Some behaviour is unspecified by the standard and was left to be
specified by the compiler.

• Reason: simplify compiler implementation and allow compilers to
optimize things better.

• Often such behaviour is also specific to the hardware that you’re
running the software on

• Examples:
– Order of subexpression evaluation: f(g(), h()).
– Sizes of types (more later)
– Signedness of char
– Number of bits in a byte

• For most of this course, we assume GCC 7+ on a 64-bit AMD64 cpu.

10

Undefined behaviour

• Certain specific actions are defined as undefined behaviour (UB)

• When a program reaches UB, one or more of the following may
happen

– Crash every time
– Crash 0.01% of the time
– Crash not when you test it, but only you use it as a library
– Delete everything on your hard drive
– Murder some puppies
– Light your house on fire
– All of the above, and still give the right result

• The existence of UB anywhere in your program makes the entire
thing meaningless!

– Reason: compilers make assumptions based on it not existing,
which may change the meaning of your program

• Often UB leads to exploitable security problems.

11

Undefined behaviour

• Certain specific actions are defined as undefined behaviour (UB)
• When a program reaches UB, one or more of the following may

happen

– Crash every time
– Crash 0.01% of the time
– Crash not when you test it, but only you use it as a library
– Delete everything on your hard drive
– Murder some puppies
– Light your house on fire
– All of the above, and still give the right result

• The existence of UB anywhere in your program makes the entire
thing meaningless!

– Reason: compilers make assumptions based on it not existing,
which may change the meaning of your program

• Often UB leads to exploitable security problems.

11

Undefined behaviour

• Certain specific actions are defined as undefined behaviour (UB)
• When a program reaches UB, one or more of the following may

happen
– Crash every time

– Crash 0.01% of the time
– Crash not when you test it, but only you use it as a library
– Delete everything on your hard drive
– Murder some puppies
– Light your house on fire
– All of the above, and still give the right result

• The existence of UB anywhere in your program makes the entire
thing meaningless!

– Reason: compilers make assumptions based on it not existing,
which may change the meaning of your program

• Often UB leads to exploitable security problems.

11

Undefined behaviour

• Certain specific actions are defined as undefined behaviour (UB)
• When a program reaches UB, one or more of the following may

happen
– Crash every time
– Crash 0.01% of the time

– Crash not when you test it, but only you use it as a library
– Delete everything on your hard drive
– Murder some puppies
– Light your house on fire
– All of the above, and still give the right result

• The existence of UB anywhere in your program makes the entire
thing meaningless!

– Reason: compilers make assumptions based on it not existing,
which may change the meaning of your program

• Often UB leads to exploitable security problems.

11

Undefined behaviour

• Certain specific actions are defined as undefined behaviour (UB)
• When a program reaches UB, one or more of the following may

happen
– Crash every time
– Crash 0.01% of the time
– Crash not when you test it, but only you use it as a library

– Delete everything on your hard drive
– Murder some puppies
– Light your house on fire
– All of the above, and still give the right result

• The existence of UB anywhere in your program makes the entire
thing meaningless!

– Reason: compilers make assumptions based on it not existing,
which may change the meaning of your program

• Often UB leads to exploitable security problems.

11

Undefined behaviour

• Certain specific actions are defined as undefined behaviour (UB)
• When a program reaches UB, one or more of the following may

happen
– Crash every time
– Crash 0.01% of the time
– Crash not when you test it, but only you use it as a library
– Delete everything on your hard drive

– Murder some puppies
– Light your house on fire
– All of the above, and still give the right result

• The existence of UB anywhere in your program makes the entire
thing meaningless!

– Reason: compilers make assumptions based on it not existing,
which may change the meaning of your program

• Often UB leads to exploitable security problems.

11

Undefined behaviour

• Certain specific actions are defined as undefined behaviour (UB)
• When a program reaches UB, one or more of the following may

happen
– Crash every time
– Crash 0.01% of the time
– Crash not when you test it, but only you use it as a library
– Delete everything on your hard drive
– Murder some puppies

– Light your house on fire
– All of the above, and still give the right result

• The existence of UB anywhere in your program makes the entire
thing meaningless!

– Reason: compilers make assumptions based on it not existing,
which may change the meaning of your program

• Often UB leads to exploitable security problems.

11

Undefined behaviour

• Certain specific actions are defined as undefined behaviour (UB)
• When a program reaches UB, one or more of the following may

happen
– Crash every time
– Crash 0.01% of the time
– Crash not when you test it, but only you use it as a library
– Delete everything on your hard drive
– Murder some puppies
– Light your house on fire

– All of the above, and still give the right result
• The existence of UB anywhere in your program makes the entire

thing meaningless!

– Reason: compilers make assumptions based on it not existing,
which may change the meaning of your program

• Often UB leads to exploitable security problems.

11

Undefined behaviour

• Certain specific actions are defined as undefined behaviour (UB)
• When a program reaches UB, one or more of the following may

happen
– Crash every time
– Crash 0.01% of the time
– Crash not when you test it, but only you use it as a library
– Delete everything on your hard drive
– Murder some puppies
– Light your house on fire
– All of the above, and still give the right result

• The existence of UB anywhere in your program makes the entire
thing meaningless!

– Reason: compilers make assumptions based on it not existing,
which may change the meaning of your program

• Often UB leads to exploitable security problems.

11

Undefined behaviour

• Certain specific actions are defined as undefined behaviour (UB)
• When a program reaches UB, one or more of the following may

happen
– Crash every time
– Crash 0.01% of the time
– Crash not when you test it, but only you use it as a library
– Delete everything on your hard drive
– Murder some puppies
– Light your house on fire
– All of the above, and still give the right result

• The existence of UB anywhere in your program makes the entire
thing meaningless!

– Reason: compilers make assumptions based on it not existing,
which may change the meaning of your program

• Often UB leads to exploitable security problems.

11

Undefined behaviour

• Certain specific actions are defined as undefined behaviour (UB)
• When a program reaches UB, one or more of the following may

happen
– Crash every time
– Crash 0.01% of the time
– Crash not when you test it, but only you use it as a library
– Delete everything on your hard drive
– Murder some puppies
– Light your house on fire
– All of the above, and still give the right result

• The existence of UB anywhere in your program makes the entire
thing meaningless!
– Reason: compilers make assumptions based on it not existing,

which may change the meaning of your program

• Often UB leads to exploitable security problems.

11

Undefined behaviour

• Certain specific actions are defined as undefined behaviour (UB)
• When a program reaches UB, one or more of the following may

happen
– Crash every time
– Crash 0.01% of the time
– Crash not when you test it, but only you use it as a library
– Delete everything on your hard drive
– Murder some puppies
– Light your house on fire
– All of the above, and still give the right result

• The existence of UB anywhere in your program makes the entire
thing meaningless!
– Reason: compilers make assumptions based on it not existing,

which may change the meaning of your program
• Often UB leads to exploitable security problems.

11

Examples of undefined behaviour

• Accessing memory out of bounds

• Reading uninitialized memory
• Division by zero
• Dereferencing a null pointer
• Signed integer overflow (INT_MAX +1)
• Left-shifting a signed integer ((-42) << 3)
• Shifting by more than the size of the type

(char x = 1; 1 << 100;)
• Returning nothing from a non-void function (int f() {})

Compilers can find some of these problems, but for weird reasons, those
warnings are often switched off by default! Make sure you enable -Wall
-Wextra when you compile code.

12

Examples of undefined behaviour

• Accessing memory out of bounds
• Reading uninitialized memory

• Division by zero
• Dereferencing a null pointer
• Signed integer overflow (INT_MAX +1)
• Left-shifting a signed integer ((-42) << 3)
• Shifting by more than the size of the type

(char x = 1; 1 << 100;)
• Returning nothing from a non-void function (int f() {})

Compilers can find some of these problems, but for weird reasons, those
warnings are often switched off by default! Make sure you enable -Wall
-Wextra when you compile code.

12

Examples of undefined behaviour

• Accessing memory out of bounds
• Reading uninitialized memory
• Division by zero

• Dereferencing a null pointer
• Signed integer overflow (INT_MAX +1)
• Left-shifting a signed integer ((-42) << 3)
• Shifting by more than the size of the type

(char x = 1; 1 << 100;)
• Returning nothing from a non-void function (int f() {})

Compilers can find some of these problems, but for weird reasons, those
warnings are often switched off by default! Make sure you enable -Wall
-Wextra when you compile code.

12

Examples of undefined behaviour

• Accessing memory out of bounds
• Reading uninitialized memory
• Division by zero
• Dereferencing a null pointer

• Signed integer overflow (INT_MAX +1)
• Left-shifting a signed integer ((-42) << 3)
• Shifting by more than the size of the type

(char x = 1; 1 << 100;)
• Returning nothing from a non-void function (int f() {})

Compilers can find some of these problems, but for weird reasons, those
warnings are often switched off by default! Make sure you enable -Wall
-Wextra when you compile code.

12

Examples of undefined behaviour

• Accessing memory out of bounds
• Reading uninitialized memory
• Division by zero
• Dereferencing a null pointer
• Signed integer overflow (INT_MAX +1)

• Left-shifting a signed integer ((-42) << 3)
• Shifting by more than the size of the type

(char x = 1; 1 << 100;)
• Returning nothing from a non-void function (int f() {})

Compilers can find some of these problems, but for weird reasons, those
warnings are often switched off by default! Make sure you enable -Wall
-Wextra when you compile code.

12

Examples of undefined behaviour

• Accessing memory out of bounds
• Reading uninitialized memory
• Division by zero
• Dereferencing a null pointer
• Signed integer overflow (INT_MAX +1)
• Left-shifting a signed integer ((-42) << 3)

• Shifting by more than the size of the type
(char x = 1; 1 << 100;)

• Returning nothing from a non-void function (int f() {})

Compilers can find some of these problems, but for weird reasons, those
warnings are often switched off by default! Make sure you enable -Wall
-Wextra when you compile code.

12

Examples of undefined behaviour

• Accessing memory out of bounds
• Reading uninitialized memory
• Division by zero
• Dereferencing a null pointer
• Signed integer overflow (INT_MAX +1)
• Left-shifting a signed integer ((-42) << 3)
• Shifting by more than the size of the type

(char x = 1; 1 << 100;)

• Returning nothing from a non-void function (int f() {})

Compilers can find some of these problems, but for weird reasons, those
warnings are often switched off by default! Make sure you enable -Wall
-Wextra when you compile code.

12

Examples of undefined behaviour

• Accessing memory out of bounds
• Reading uninitialized memory
• Division by zero
• Dereferencing a null pointer
• Signed integer overflow (INT_MAX +1)
• Left-shifting a signed integer ((-42) << 3)
• Shifting by more than the size of the type

(char x = 1; 1 << 100;)
• Returning nothing from a non-void function (int f() {})
Compilers can find some of these problems, but for weird reasons, those
warnings are often switched off by default! Make sure you enable -Wall
-Wextra when you compile code.

12

Table of Contents

Introduction

Undefined behaviour

Abstracting away from bytes in memory

Integer representations

13

Values

• A program typically applies operations to values (add, sub, mul)

• In assembly, you need to carefully manage where you store values

– Limited number of registers, often necessary to spill to stack

• The compiler takes care of that for you in higher-level languages
• When calling a function void f(int x) { x += 10;} as f(y) you

pass it the value of y.

– this is called call-by-value
– The compiler copies x if necessary
– Modifying the passed value in f won’t change it outside the

function: y=10; f(y); printf("y = %d\n", y); will still
print 10.

14

Values

• A program typically applies operations to values (add, sub, mul)
• In assembly, you need to carefully manage where you store values

– Limited number of registers, often necessary to spill to stack
• The compiler takes care of that for you in higher-level languages
• When calling a function void f(int x) { x += 10;} as f(y) you

pass it the value of y.

– this is called call-by-value
– The compiler copies x if necessary
– Modifying the passed value in f won’t change it outside the

function: y=10; f(y); printf("y = %d\n", y); will still
print 10.

14

Values

• A program typically applies operations to values (add, sub, mul)
• In assembly, you need to carefully manage where you store values

– Limited number of registers, often necessary to spill to stack

• The compiler takes care of that for you in higher-level languages
• When calling a function void f(int x) { x += 10;} as f(y) you

pass it the value of y.

– this is called call-by-value
– The compiler copies x if necessary
– Modifying the passed value in f won’t change it outside the

function: y=10; f(y); printf("y = %d\n", y); will still
print 10.

14

Values

• A program typically applies operations to values (add, sub, mul)
• In assembly, you need to carefully manage where you store values

– Limited number of registers, often necessary to spill to stack
• The compiler takes care of that for you in higher-level languages

• When calling a function void f(int x) { x += 10;} as f(y) you
pass it the value of y.

– this is called call-by-value
– The compiler copies x if necessary
– Modifying the passed value in f won’t change it outside the

function: y=10; f(y); printf("y = %d\n", y); will still
print 10.

14

Values

• A program typically applies operations to values (add, sub, mul)
• In assembly, you need to carefully manage where you store values

– Limited number of registers, often necessary to spill to stack
• The compiler takes care of that for you in higher-level languages
• When calling a function void f(int x) { x += 10;} as f(y) you

pass it the value of y.

– this is called call-by-value
– The compiler copies x if necessary
– Modifying the passed value in f won’t change it outside the

function: y=10; f(y); printf("y = %d\n", y); will still
print 10.

14

Values

• A program typically applies operations to values (add, sub, mul)
• In assembly, you need to carefully manage where you store values

– Limited number of registers, often necessary to spill to stack
• The compiler takes care of that for you in higher-level languages
• When calling a function void f(int x) { x += 10;} as f(y) you

pass it the value of y.
– this is called call-by-value

– The compiler copies x if necessary
– Modifying the passed value in f won’t change it outside the

function: y=10; f(y); printf("y = %d\n", y); will still
print 10.

14

Values

• A program typically applies operations to values (add, sub, mul)
• In assembly, you need to carefully manage where you store values

– Limited number of registers, often necessary to spill to stack
• The compiler takes care of that for you in higher-level languages
• When calling a function void f(int x) { x += 10;} as f(y) you

pass it the value of y.
– this is called call-by-value
– The compiler copies x if necessary

– Modifying the passed value in f won’t change it outside the
function: y=10; f(y); printf("y = %d\n", y); will still
print 10.

14

Values

• A program typically applies operations to values (add, sub, mul)
• In assembly, you need to carefully manage where you store values

– Limited number of registers, often necessary to spill to stack
• The compiler takes care of that for you in higher-level languages
• When calling a function void f(int x) { x += 10;} as f(y) you

pass it the value of y.
– this is called call-by-value
– The compiler copies x if necessary
– Modifying the passed value in f won’t change it outside the

function: y=10; f(y); printf("y = %d\n", y); will still
print 10.

14

Addresses

• You can get the address of a variable using the & operator:
int a; &a

• You then obtain a pointer to a
• A pointer to a type is denoted as type*, e.g. int*, char*.
We will return to pointers later

15

Addresses

• You can get the address of a variable using the & operator:
int a; &a

• You then obtain a pointer to a

• A pointer to a type is denoted as type*, e.g. int*, char*.
We will return to pointers later

15

Addresses

• You can get the address of a variable using the & operator:
int a; &a

• You then obtain a pointer to a
• A pointer to a type is denoted as type*, e.g. int*, char*.

We will return to pointers later

15

Addresses

• You can get the address of a variable using the & operator:
int a; &a

• You then obtain a pointer to a
• A pointer to a type is denoted as type*, e.g. int*, char*.

We will return to pointers later

15

Addresses

• You can get the address of a variable using the & operator:
int a; &a

• You then obtain a pointer to a
• A pointer to a type is denoted as type*, e.g. int*, char*.
We will return to pointers later

15

Types

• The hardware only understands memory as a bunch of bytes that it
can perform certain operations on

• Bytes are sets of 8 bits
• For writing software, other types are helpful to help determine

semantics
– it’s helpful that a compiler gives an error when you call

strlen(3).
• You can program without really understanding how these types map

to bytes.
• But we can have more fun if we do know how it works

16

char

• The most elementary data type

• Almost anywhere exactly 1 byte (required by POSIX)
• Can be used to store characters: char a = '2';
• But char is an 8-bit integer type
• We can just assign any 8-bit integer value to char types.

char a = '2';
char b = 2;
char c = 50;

• In fact, a == c because ASCII character ’2’ is 50.
• Writing 'A' + 3 is perfectly valid and will result in 'D'.

17

char

• The most elementary data type
• Almost anywhere exactly 1 byte (required by POSIX)

• Can be used to store characters: char a = '2';
• But char is an 8-bit integer type
• We can just assign any 8-bit integer value to char types.

char a = '2';
char b = 2;
char c = 50;

• In fact, a == c because ASCII character ’2’ is 50.
• Writing 'A' + 3 is perfectly valid and will result in 'D'.

17

char

• The most elementary data type
• Almost anywhere exactly 1 byte (required by POSIX)
• Can be used to store characters: char a = '2';

• But char is an 8-bit integer type
• We can just assign any 8-bit integer value to char types.

char a = '2';
char b = 2;
char c = 50;

• In fact, a == c because ASCII character ’2’ is 50.
• Writing 'A' + 3 is perfectly valid and will result in 'D'.

17

char

• The most elementary data type
• Almost anywhere exactly 1 byte (required by POSIX)
• Can be used to store characters: char a = '2';
• But char is an 8-bit integer type

• We can just assign any 8-bit integer value to char types.
char a = '2';
char b = 2;
char c = 50;

• In fact, a == c because ASCII character ’2’ is 50.
• Writing 'A' + 3 is perfectly valid and will result in 'D'.

17

char

• The most elementary data type
• Almost anywhere exactly 1 byte (required by POSIX)
• Can be used to store characters: char a = '2';
• But char is an 8-bit integer type
• We can just assign any 8-bit integer value to char types.

char a = '2';
char b = 2;
char c = 50;

• In fact, a == c because ASCII character ’2’ is 50.
• Writing 'A' + 3 is perfectly valid and will result in 'D'.

17

char

• The most elementary data type
• Almost anywhere exactly 1 byte (required by POSIX)
• Can be used to store characters: char a = '2';
• But char is an 8-bit integer type
• We can just assign any 8-bit integer value to char types.

char a = '2';
char b = 2;
char c = 50;

• In fact, a == c because ASCII character ’2’ is 50.

• Writing 'A' + 3 is perfectly valid and will result in 'D'.

17

char

• The most elementary data type
• Almost anywhere exactly 1 byte (required by POSIX)
• Can be used to store characters: char a = '2';
• But char is an 8-bit integer type
• We can just assign any 8-bit integer value to char types.

char a = '2';
char b = 2;
char c = 50;

• In fact, a == c because ASCII character ’2’ is 50.
• Writing 'A' + 3 is perfectly valid and will result in 'D'.

17

Tricky char

How many times will the following line be printed?
for (char i = 42; i >= 0; i--) {
printf("Crypto stands for cryptography");

}

• Trick question! It is compiler-defined if char is signed (-128–127) or
unsigned (0–255).

• On amd64, char is signed, so it will terminate.
• On Aarch64 (64-bit ARMv8), char is unsigned, so it will loop forever.
• Always write signed char or unsigned char in portable software.

18

Tricky char

How many times will the following line be printed?
for (char i = 42; i >= 0; i--) {
printf("Crypto stands for cryptography");

}

• Trick question! It is compiler-defined if char is signed (-128–127) or
unsigned (0–255).

• On amd64, char is signed, so it will terminate.
• On Aarch64 (64-bit ARMv8), char is unsigned, so it will loop forever.
• Always write signed char or unsigned char in portable software.

18

Tricky char

How many times will the following line be printed?
for (char i = 42; i >= 0; i--) {
printf("Crypto stands for cryptography");

}

• Trick question! It is compiler-defined if char is signed (-128–127) or
unsigned (0–255).

• On amd64, char is signed, so it will terminate.

• On Aarch64 (64-bit ARMv8), char is unsigned, so it will loop forever.
• Always write signed char or unsigned char in portable software.

18

Tricky char

How many times will the following line be printed?
for (char i = 42; i >= 0; i--) {
printf("Crypto stands for cryptography");

}

• Trick question! It is compiler-defined if char is signed (-128–127) or
unsigned (0–255).

• On amd64, char is signed, so it will terminate.
• On Aarch64 (64-bit ARMv8), char is unsigned, so it will loop forever.

• Always write signed char or unsigned char in portable software.

18

Tricky char

How many times will the following line be printed?
for (char i = 42; i >= 0; i--) {
printf("Crypto stands for cryptography");

}

• Trick question! It is compiler-defined if char is signed (-128–127) or
unsigned (0–255).

• On amd64, char is signed, so it will terminate.
• On Aarch64 (64-bit ARMv8), char is unsigned, so it will loop forever.
• Always write signed char or unsigned char in portable software.

18

Integral types

• Other types that are important:

– short: at least two bytes
– int: typically 4 bytes (but sometimes only two bytes!)
– long: either 4 bytes or 8 bytes (different between Linux and

Windows!)
– long long: 8 bytes

• Each of these are in signed (default) and unsigned variants
• Find the size of a type: printf("%zu\n", sizeof(int));
• We can also do this via variable: int x; sizeof(x);
• We can write integer literals as:

– Decimal: 255
– Octal: 0377 (prefix 0)
– Hexadecimal: 0xFF (prefix 0x)

19

Integral types

• Other types that are important:
– short: at least two bytes

– int: typically 4 bytes (but sometimes only two bytes!)
– long: either 4 bytes or 8 bytes (different between Linux and

Windows!)
– long long: 8 bytes

• Each of these are in signed (default) and unsigned variants
• Find the size of a type: printf("%zu\n", sizeof(int));
• We can also do this via variable: int x; sizeof(x);
• We can write integer literals as:

– Decimal: 255
– Octal: 0377 (prefix 0)
– Hexadecimal: 0xFF (prefix 0x)

19

Integral types

• Other types that are important:
– short: at least two bytes
– int: typically 4 bytes (but sometimes only two bytes!)

– long: either 4 bytes or 8 bytes (different between Linux and
Windows!)

– long long: 8 bytes
• Each of these are in signed (default) and unsigned variants
• Find the size of a type: printf("%zu\n", sizeof(int));
• We can also do this via variable: int x; sizeof(x);
• We can write integer literals as:

– Decimal: 255
– Octal: 0377 (prefix 0)
– Hexadecimal: 0xFF (prefix 0x)

19

Integral types

• Other types that are important:
– short: at least two bytes
– int: typically 4 bytes (but sometimes only two bytes!)
– long: either 4 bytes or 8 bytes (different between Linux and

Windows!)

– long long: 8 bytes
• Each of these are in signed (default) and unsigned variants
• Find the size of a type: printf("%zu\n", sizeof(int));
• We can also do this via variable: int x; sizeof(x);
• We can write integer literals as:

– Decimal: 255
– Octal: 0377 (prefix 0)
– Hexadecimal: 0xFF (prefix 0x)

19

Integral types

• Other types that are important:
– short: at least two bytes
– int: typically 4 bytes (but sometimes only two bytes!)
– long: either 4 bytes or 8 bytes (different between Linux and

Windows!)
– long long: 8 bytes

• Each of these are in signed (default) and unsigned variants
• Find the size of a type: printf("%zu\n", sizeof(int));
• We can also do this via variable: int x; sizeof(x);
• We can write integer literals as:

– Decimal: 255
– Octal: 0377 (prefix 0)
– Hexadecimal: 0xFF (prefix 0x)

19

Integral types

• Other types that are important:
– short: at least two bytes
– int: typically 4 bytes (but sometimes only two bytes!)
– long: either 4 bytes or 8 bytes (different between Linux and

Windows!)
– long long: 8 bytes

• Each of these are in signed (default) and unsigned variants

• Find the size of a type: printf("%zu\n", sizeof(int));
• We can also do this via variable: int x; sizeof(x);
• We can write integer literals as:

– Decimal: 255
– Octal: 0377 (prefix 0)
– Hexadecimal: 0xFF (prefix 0x)

19

Integral types

• Other types that are important:
– short: at least two bytes
– int: typically 4 bytes (but sometimes only two bytes!)
– long: either 4 bytes or 8 bytes (different between Linux and

Windows!)
– long long: 8 bytes

• Each of these are in signed (default) and unsigned variants
• Find the size of a type: printf("%zu\n", sizeof(int));

• We can also do this via variable: int x; sizeof(x);
• We can write integer literals as:

– Decimal: 255
– Octal: 0377 (prefix 0)
– Hexadecimal: 0xFF (prefix 0x)

19

Integral types

• Other types that are important:
– short: at least two bytes
– int: typically 4 bytes (but sometimes only two bytes!)
– long: either 4 bytes or 8 bytes (different between Linux and

Windows!)
– long long: 8 bytes

• Each of these are in signed (default) and unsigned variants
• Find the size of a type: printf("%zu\n", sizeof(int));
• We can also do this via variable: int x; sizeof(x);

• We can write integer literals as:

– Decimal: 255
– Octal: 0377 (prefix 0)
– Hexadecimal: 0xFF (prefix 0x)

19

Integral types

• Other types that are important:
– short: at least two bytes
– int: typically 4 bytes (but sometimes only two bytes!)
– long: either 4 bytes or 8 bytes (different between Linux and

Windows!)
– long long: 8 bytes

• Each of these are in signed (default) and unsigned variants
• Find the size of a type: printf("%zu\n", sizeof(int));
• We can also do this via variable: int x; sizeof(x);
• We can write integer literals as:

– Decimal: 255
– Octal: 0377 (prefix 0)
– Hexadecimal: 0xFF (prefix 0x)

19

Integral types

• Other types that are important:
– short: at least two bytes
– int: typically 4 bytes (but sometimes only two bytes!)
– long: either 4 bytes or 8 bytes (different between Linux and

Windows!)
– long long: 8 bytes

• Each of these are in signed (default) and unsigned variants
• Find the size of a type: printf("%zu\n", sizeof(int));
• We can also do this via variable: int x; sizeof(x);
• We can write integer literals as:

– Decimal: 255

– Octal: 0377 (prefix 0)
– Hexadecimal: 0xFF (prefix 0x)

19

Integral types

• Other types that are important:
– short: at least two bytes
– int: typically 4 bytes (but sometimes only two bytes!)
– long: either 4 bytes or 8 bytes (different between Linux and

Windows!)
– long long: 8 bytes

• Each of these are in signed (default) and unsigned variants
• Find the size of a type: printf("%zu\n", sizeof(int));
• We can also do this via variable: int x; sizeof(x);
• We can write integer literals as:

– Decimal: 255
– Octal: 0377 (prefix 0)

– Hexadecimal: 0xFF (prefix 0x)

19

Integral types

• Other types that are important:
– short: at least two bytes
– int: typically 4 bytes (but sometimes only two bytes!)
– long: either 4 bytes or 8 bytes (different between Linux and

Windows!)
– long long: 8 bytes

• Each of these are in signed (default) and unsigned variants
• Find the size of a type: printf("%zu\n", sizeof(int));
• We can also do this via variable: int x; sizeof(x);
• We can write integer literals as:

– Decimal: 255
– Octal: 0377 (prefix 0)
– Hexadecimal: 0xFF (prefix 0x)

19

Other integer types

• There is a special integer type to indicate sizes: size_t

• For example returned by sizeof, expected as argument by malloc
• Pointers also have a specific size, 8 bytes on amd64

20

Other integer types

• There is a special integer type to indicate sizes: size_t
• For example returned by sizeof, expected as argument by malloc

• Pointers also have a specific size, 8 bytes on amd64

20

Other integer types

• There is a special integer type to indicate sizes: size_t
• For example returned by sizeof, expected as argument by malloc
• Pointers also have a specific size, 8 bytes on amd64

20

Better integer types

• All those varying byte sizes of int et al. make it hard to write
efficient portable code

• Solution: use fixed-size integer types defined by stdint.h
– uint8_t is an 8-bit unsigned integer
– int8_t is an 8-bit signed integer
– uint16_t is a 16-bit unsigned integer
– . . .
– int64_t is a 64-bit signed integer

21

Floating-point and complex values

• C also defines 3 “real” types:
– float: usually 32-bit IEEE 754 “single-precision” floats
– double: usually 64-bit IEEE 754 “double-precision” floats
– long double:: usually 80-bit “extended precision” floats

• Corresponding “complex” types (need to include complex.h)
• This course: not much float hacking
• However, this is fun, see “What every computer scientist should

know about floating point arithmetic”
www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf

• Small example:
double a; /* assume IEEE 754 standard */
// snip
a += 6755399441055744;
a -= 6755399441055744;

• What does this code do to a?
• Answer: it rounds a according to the currently set rounding mode

22

www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf

Floating-point and complex values

• C also defines 3 “real” types:
– float: usually 32-bit IEEE 754 “single-precision” floats
– double: usually 64-bit IEEE 754 “double-precision” floats
– long double:: usually 80-bit “extended precision” floats

• Corresponding “complex” types (need to include complex.h)

• This course: not much float hacking
• However, this is fun, see “What every computer scientist should

know about floating point arithmetic”
www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf

• Small example:
double a; /* assume IEEE 754 standard */
// snip
a += 6755399441055744;
a -= 6755399441055744;

• What does this code do to a?
• Answer: it rounds a according to the currently set rounding mode

22

www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf

Floating-point and complex values

• C also defines 3 “real” types:
– float: usually 32-bit IEEE 754 “single-precision” floats
– double: usually 64-bit IEEE 754 “double-precision” floats
– long double:: usually 80-bit “extended precision” floats

• Corresponding “complex” types (need to include complex.h)
• This course: not much float hacking
• However, this is fun, see “What every computer scientist should

know about floating point arithmetic”
www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf

• Small example:
double a; /* assume IEEE 754 standard */
// snip
a += 6755399441055744;
a -= 6755399441055744;

• What does this code do to a?
• Answer: it rounds a according to the currently set rounding mode

22

www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf

Floating-point and complex values

• C also defines 3 “real” types:
– float: usually 32-bit IEEE 754 “single-precision” floats
– double: usually 64-bit IEEE 754 “double-precision” floats
– long double:: usually 80-bit “extended precision” floats

• Corresponding “complex” types (need to include complex.h)
• This course: not much float hacking
• However, this is fun, see “What every computer scientist should

know about floating point arithmetic”
www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf

• Small example:
double a; /* assume IEEE 754 standard */
// snip
a += 6755399441055744;
a -= 6755399441055744;

• What does this code do to a?

• Answer: it rounds a according to the currently set rounding mode

22

www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf

Floating-point and complex values

• C also defines 3 “real” types:
– float: usually 32-bit IEEE 754 “single-precision” floats
– double: usually 64-bit IEEE 754 “double-precision” floats
– long double:: usually 80-bit “extended precision” floats

• Corresponding “complex” types (need to include complex.h)
• This course: not much float hacking
• However, this is fun, see “What every computer scientist should

know about floating point arithmetic”
www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf

• Small example:
double a; /* assume IEEE 754 standard */
// snip
a += 6755399441055744;
a -= 6755399441055744;

• What does this code do to a?

• Answer: it rounds a according to the currently set rounding mode

22

www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf

Floating-point and complex values

• C also defines 3 “real” types:
– float: usually 32-bit IEEE 754 “single-precision” floats
– double: usually 64-bit IEEE 754 “double-precision” floats
– long double:: usually 80-bit “extended precision” floats

• Corresponding “complex” types (need to include complex.h)
• This course: not much float hacking
• However, this is fun, see “What every computer scientist should

know about floating point arithmetic”
www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf

• Small example:
double a; /* assume IEEE 754 standard */
// snip
a += 6755399441055744;
a -= 6755399441055744;

• What does this code do to a?
• Answer: it rounds a according to the currently set rounding mode

22

www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf

Excursion: printf

printf is a function that prints something according to a format string.
#include <stdio.h>
printf("%d", a); /* prints signed integers in decimal */
printf("%u", b); /* prints unsigned integers in decimal */
printf("%x", c); /* prints integers in hexadecimal */
printf("%o", c); /* prints integers in octal */
printf("%lu", d); /* prints long unsigned integer in decimal */
printf("%llu", d); /* prints long long unsigned integer in decimal */
printf("%p", &d); /* prints pointers (in hexadecimal) */
printf("%f", e); /* prints single-precision floats */
printf("%lf", e); /* prints double-precision floats */
printf("%llf", e); /* prints extended-precision floats */
printf("%zu", f); /* prints a size_t as unsigned decimal*/
printf("%" PRIu8, g); /* prints a uint8_t */
printf("%" PRIu64, h); /* prints a uint64_t */
printf("%" PRId64, i); /* prints a int64_t */
printf("%" PRIx64, i); /* prints a (u)int64_t as hex */

23

Implicit type conversion

• Sometimes we want to evaluate expressions involving different types
• Example:

float pi, r, circ;
pi = 3.14159265;
circ = 2*pi*r;

• C uses complex rules to implicitly convert types
• Often these rules are perfectly intuitive:

– Convert “less precise” type to more precise type, preserve values
– Compute modulo 216, when casting from uint32_t to

uint16_t
• However, these rules can be rather counterintuitive:

unsigned int a = 1;
int b = -1;
if(b < a) printf("all good\n");
else printf("WTF?\n");

24

Implicit type conversion

• Sometimes we want to evaluate expressions involving different types
• Example:

float pi, r, circ;
pi = 3.14159265;
circ = 2*pi*r;

• C uses complex rules to implicitly convert types
• Often these rules are perfectly intuitive:

– Convert “less precise” type to more precise type, preserve values
– Compute modulo 216, when casting from uint32_t to

uint16_t

• However, these rules can be rather counterintuitive:
unsigned int a = 1;
int b = -1;
if(b < a) printf("all good\n");
else printf("WTF?\n");

24

Implicit type conversion

• Sometimes we want to evaluate expressions involving different types
• Example:

float pi, r, circ;
pi = 3.14159265;
circ = 2*pi*r;

• C uses complex rules to implicitly convert types
• Often these rules are perfectly intuitive:

– Convert “less precise” type to more precise type, preserve values
– Compute modulo 216, when casting from uint32_t to

uint16_t
• However, these rules can be rather counterintuitive:

unsigned int a = 1;
int b = -1;
if(b < a) printf("all good\n");
else printf("WTF?\n");

24

Explicit casts

• Sometimes we need to convert explicitly
• Example: multiply two (32-bit) integers:

uint32_t a,b;
...
uint32_t r = a*b;

• By “default”, result of a*b has 32-bits; upper 32 bits are “lost”
• Fix by casting one (or both) factors:

uint64_t r = (uint64_t)a*b;
• Can also use this to, e.g., truncate floats:

float a = 3.14159265;
float c = (int) a;
printf("%f\n", trunc(a));
printf("%f\n", c);

• Careful, this does not generally work (undefined behavior ahead)!

25

Explicit casts

• Sometimes we need to convert explicitly
• Example: multiply two (32-bit) integers:

uint32_t a,b;
...
uint32_t r = a*b;

• By “default”, result of a*b has 32-bits; upper 32 bits are “lost”
• Fix by casting one (or both) factors:

uint64_t r = (uint64_t)a*b;

• Can also use this to, e.g., truncate floats:
float a = 3.14159265;
float c = (int) a;
printf("%f\n", trunc(a));
printf("%f\n", c);

• Careful, this does not generally work (undefined behavior ahead)!

25

Explicit casts

• Sometimes we need to convert explicitly
• Example: multiply two (32-bit) integers:

uint32_t a,b;
...
uint32_t r = a*b;

• By “default”, result of a*b has 32-bits; upper 32 bits are “lost”
• Fix by casting one (or both) factors:

uint64_t r = (uint64_t)a*b;
• Can also use this to, e.g., truncate floats:

float a = 3.14159265;
float c = (int) a;
printf("%f\n", trunc(a));
printf("%f\n", c);

• Careful, this does not generally work (undefined behavior ahead)!

25

Explicit casts

• Sometimes we need to convert explicitly
• Example: multiply two (32-bit) integers:

uint32_t a,b;
...
uint32_t r = a*b;

• By “default”, result of a*b has 32-bits; upper 32 bits are “lost”
• Fix by casting one (or both) factors:

uint64_t r = (uint64_t)a*b;
• Can also use this to, e.g., truncate floats:

float a = 3.14159265;
float c = (int) a;
printf("%f\n", trunc(a));
printf("%f\n", c);

• Careful, this does not generally work (undefined behavior ahead)!

25

A small quiz

What do you think this program will print?
unsigned char x = 128;
signed char y = x;
printf("The value of y is %d\n", y);

(Obviously, the answer is “undefined behavior” – it’s C after all)

26

A small quiz

What do you think this program will print?
unsigned char x = 128;
signed char y = x;
printf("The value of y is %d\n", y);

(Obviously, the answer is “undefined behavior” – it’s C after all)

26

Table of Contents

Introduction

Undefined behaviour

Abstracting away from bytes in memory

Integer representations

27

Two’s complement

• Can represent a signed integer as “sign + absolute value”
• Disadvantage: zero has two representations (0 and -0)

• Other idea: flip all bits in a to obtain -a.
• This is known as “ones complement”
• Still: zero has two representations
• Much more common: two’s complement

– flip all bits in a
– add 1

• Sanity test: a == -(-a)
• Range of k-bit signed integer: {−2k−1, . . . , 2k−1 − 1}
• Example: signed (8-bit) byte: {−128, . . . , 127}
• Can use the same hardware for signed and unsigned addition

28

Two’s complement

• Can represent a signed integer as “sign + absolute value”
• Disadvantage: zero has two representations (0 and -0)
• Other idea: flip all bits in a to obtain -a.
• This is known as “ones complement”
• Still: zero has two representations

• Much more common: two’s complement
– flip all bits in a
– add 1

• Sanity test: a == -(-a)
• Range of k-bit signed integer: {−2k−1, . . . , 2k−1 − 1}
• Example: signed (8-bit) byte: {−128, . . . , 127}
• Can use the same hardware for signed and unsigned addition

28

Two’s complement

• Can represent a signed integer as “sign + absolute value”
• Disadvantage: zero has two representations (0 and -0)
• Other idea: flip all bits in a to obtain -a.
• This is known as “ones complement”
• Still: zero has two representations
• Much more common: two’s complement

– flip all bits in a
– add 1

• Sanity test: a == -(-a)
• Range of k-bit signed integer: {−2k−1, . . . , 2k−1 − 1}
• Example: signed (8-bit) byte: {−128, . . . , 127}
• Can use the same hardware for signed and unsigned addition

28

Two’s complement

• Can represent a signed integer as “sign + absolute value”
• Disadvantage: zero has two representations (0 and -0)
• Other idea: flip all bits in a to obtain -a.
• This is known as “ones complement”
• Still: zero has two representations
• Much more common: two’s complement

– flip all bits in a
– add 1

• Sanity test: a == -(-a)

• Range of k-bit signed integer: {−2k−1, . . . , 2k−1 − 1}
• Example: signed (8-bit) byte: {−128, . . . , 127}
• Can use the same hardware for signed and unsigned addition

28

Two’s complement

• Can represent a signed integer as “sign + absolute value”
• Disadvantage: zero has two representations (0 and -0)
• Other idea: flip all bits in a to obtain -a.
• This is known as “ones complement”
• Still: zero has two representations
• Much more common: two’s complement

– flip all bits in a
– add 1

• Sanity test: a == -(-a)
• Range of k-bit signed integer: {−2k−1, . . . , 2k−1 − 1}
• Example: signed (8-bit) byte: {−128, . . . , 127}

• Can use the same hardware for signed and unsigned addition

28

Two’s complement

• Can represent a signed integer as “sign + absolute value”
• Disadvantage: zero has two representations (0 and -0)
• Other idea: flip all bits in a to obtain -a.
• This is known as “ones complement”
• Still: zero has two representations
• Much more common: two’s complement

– flip all bits in a
– add 1

• Sanity test: a == -(-a)
• Range of k-bit signed integer: {−2k−1, . . . , 2k−1 − 1}
• Example: signed (8-bit) byte: {−128, . . . , 127}
• Can use the same hardware for signed and unsigned addition

28

Endianess

• Let’s consider the 32-bit integer 287454020 =0x11223344
• How would you put it into memory. . . ,like this?:

| 11 | 22 | 33 | 44 |

0x0...0 0x0...1 0x0...2 0x0...3

• How about like this?
| 44 | 33 | 22 | 11 |

0x0...0 0x0...1 0x0...2 0x0...3

• What do you find more intuitive?

29

Endianess

• Let’s consider the 32-bit integer 287454020 =0x11223344
• How would you put it into memory. . . ,like this?:

| 11 | 22 | 33 | 44 |

0x0...0 0x0...1 0x0...2 0x0...3

• How about like this?
| 44 | 33 | 22 | 11 |

0x0...0 0x0...1 0x0...2 0x0...3

• What do you find more intuitive?

29

Endianess

• Let’s consider the 32-bit integer 287454020 =0x11223344
• How would you put it into memory. . . ,like this?:

| 11 | 22 | 33 | 44 |

0x0...0 0x0...1 0x0...2 0x0...3

• How about like this?
| 44 | 33 | 22 | 11 |

0x0...0 0x0...1 0x0...2 0x0...3

• What do you find more intuitive?

29

Endianess, let’s try again

• Take 4-byte integer a =
∑3

i=0 ai2
8i

• The ai are the bytes of a

• How would you put it into memory. . . ,like this?:
| a0 | a1 | a2 | a3 |

0x0...0 0x0...1 0x0...2 0x0...3

• Or would you rather have this?
| a3 | a2 | a1 | a0 |

0x0...0 0x0...1 0x0...2 0x0...3

• Again a quick poll: What do you find more intuitive?

30

Endianess, let’s try again

• Take 4-byte integer a =
∑3

i=0 ai2
8i

• The ai are the bytes of a
• How would you put it into memory. . . ,like this?:

| a0 | a1 | a2 | a3 |

0x0...0 0x0...1 0x0...2 0x0...3

• Or would you rather have this?
| a3 | a2 | a1 | a0 |

0x0...0 0x0...1 0x0...2 0x0...3

• Again a quick poll: What do you find more intuitive?

30

Endianess, let’s try again

• Take 4-byte integer a =
∑3

i=0 ai2
8i

• The ai are the bytes of a
• How would you put it into memory. . . ,like this?:

| a0 | a1 | a2 | a3 |

0x0...0 0x0...1 0x0...2 0x0...3

• Or would you rather have this?
| a3 | a2 | a1 | a0 |

0x0...0 0x0...1 0x0...2 0x0...3

• Again a quick poll: What do you find more intuitive?

30

Endianess, the conclusion

• Least significant bytes at low addresses: little endian
• Most significant bytes at low addresses: big endian

• This is short for “little/big endian byte first”
• Most CPUs today use little endian
• Examples for big-endian CPUs:

– Classic PowerPC
– UltraSPARC

• ARM and POWER8 can switch endianess (is “bi-endian”); usually
used little-endian

• The problem with little-endian intuition is just that we write
left-to-right (but use Arabic numbers)

• Endianness wil become important again when we need to write
memory addresses later

31

Endianess, the conclusion

• Least significant bytes at low addresses: little endian
• Most significant bytes at low addresses: big endian
• This is short for “little/big endian byte first”

• Most CPUs today use little endian
• Examples for big-endian CPUs:

– Classic PowerPC
– UltraSPARC

• ARM and POWER8 can switch endianess (is “bi-endian”); usually
used little-endian

• The problem with little-endian intuition is just that we write
left-to-right (but use Arabic numbers)

• Endianness wil become important again when we need to write
memory addresses later

31

Endianess, the conclusion

• Least significant bytes at low addresses: little endian
• Most significant bytes at low addresses: big endian
• This is short for “little/big endian byte first”
• Most CPUs today use little endian

• Examples for big-endian CPUs:
– Classic PowerPC
– UltraSPARC

• ARM and POWER8 can switch endianess (is “bi-endian”); usually
used little-endian

• The problem with little-endian intuition is just that we write
left-to-right (but use Arabic numbers)

• Endianness wil become important again when we need to write
memory addresses later

31

Endianess, the conclusion

• Least significant bytes at low addresses: little endian
• Most significant bytes at low addresses: big endian
• This is short for “little/big endian byte first”
• Most CPUs today use little endian
• Examples for big-endian CPUs:

– Classic PowerPC
– UltraSPARC

• ARM and POWER8 can switch endianess (is “bi-endian”); usually
used little-endian

• The problem with little-endian intuition is just that we write
left-to-right (but use Arabic numbers)

• Endianness wil become important again when we need to write
memory addresses later

31

Endianess, the conclusion

• Least significant bytes at low addresses: little endian
• Most significant bytes at low addresses: big endian
• This is short for “little/big endian byte first”
• Most CPUs today use little endian
• Examples for big-endian CPUs:

– Classic PowerPC
– UltraSPARC

• ARM and POWER8 can switch endianess (is “bi-endian”); usually
used little-endian

• The problem with little-endian intuition is just that we write
left-to-right (but use Arabic numbers)

• Endianness wil become important again when we need to write
memory addresses later

31

Endianess, the conclusion

• Least significant bytes at low addresses: little endian
• Most significant bytes at low addresses: big endian
• This is short for “little/big endian byte first”
• Most CPUs today use little endian
• Examples for big-endian CPUs:

– Classic PowerPC
– UltraSPARC

• ARM and POWER8 can switch endianess (is “bi-endian”); usually
used little-endian

• The problem with little-endian intuition is just that we write
left-to-right (but use Arabic numbers)

• Endianness wil become important again when we need to write
memory addresses later

31

Memory addresses

• On 32-bit x86 processors, addresses were 4 bytes.

• Current AMD64 processors support up to 248 bytes of memory
(256TiB)

– This means you need 6 bytes to represent 248 addresses
– 8 Bytes are used for addresses though.

I Upper 3 bytes are either in 0x000000...–0x00007f...,
or 0xffff80...–0xffffff....

I On Linux, the first is userspace and the second is
kernelspace

I 0x000080...–0xffff7f... are not used

32

Memory addresses

• On 32-bit x86 processors, addresses were 4 bytes.
• Current AMD64 processors support up to 248 bytes of memory

(256TiB)

– This means you need 6 bytes to represent 248 addresses
– 8 Bytes are used for addresses though.

I Upper 3 bytes are either in 0x000000...–0x00007f...,
or 0xffff80...–0xffffff....

I On Linux, the first is userspace and the second is
kernelspace

I 0x000080...–0xffff7f... are not used

32

Memory addresses

• On 32-bit x86 processors, addresses were 4 bytes.
• Current AMD64 processors support up to 248 bytes of memory

(256TiB)
– This means you need 6 bytes to represent 248 addresses

– 8 Bytes are used for addresses though.
I Upper 3 bytes are either in 0x000000...–0x00007f...,

or 0xffff80...–0xffffff....
I On Linux, the first is userspace and the second is

kernelspace
I 0x000080...–0xffff7f... are not used

32

Memory addresses

• On 32-bit x86 processors, addresses were 4 bytes.
• Current AMD64 processors support up to 248 bytes of memory

(256TiB)
– This means you need 6 bytes to represent 248 addresses
– 8 Bytes are used for addresses though.

I Upper 3 bytes are either in 0x000000...–0x00007f...,
or 0xffff80...–0xffffff....

I On Linux, the first is userspace and the second is
kernelspace

I 0x000080...–0xffff7f... are not used

32

Back to pointers

We can print the address of a variable:
int a = 4; /* https://xkcd.com/221/ */
int* a_ptr = &a;
printf("The value of the variable a = %d\n", a);
printf("The address of the variable a = %p\n", &a);
printf("The value of the variable a_ptr = %p\n", a_ptr);
printf("The value pointed to by a_ptr = %d\n", *a_ptr);

Output:

The value of the variable a = 4
The address of the variable a = 0x7ffd1be9fb8c
The value of the variable a_ptr = 0x7ffd1be9fb8c
The value pointed to by a_ptr = 4

Variable a is stored very high in the user-space memory, because int a
defines a stack variable.

33

Back to pointers

We can print the address of a variable:
int a = 4; /* https://xkcd.com/221/ */
int* a_ptr = &a;
printf("The value of the variable a = %d\n", a);
printf("The address of the variable a = %p\n", &a);
printf("The value of the variable a_ptr = %p\n", a_ptr);
printf("The value pointed to by a_ptr = %d\n", *a_ptr);
Output:

The value of the variable a = 4
The address of the variable a = 0x7ffd1be9fb8c
The value of the variable a_ptr = 0x7ffd1be9fb8c
The value pointed to by a_ptr = 4

Variable a is stored very high in the user-space memory, because int a
defines a stack variable.

33

Back to pointers

We can print the address of a variable:
int a = 4; /* https://xkcd.com/221/ */
int* a_ptr = &a;
printf("The value of the variable a = %d\n", a);
printf("The address of the variable a = %p\n", &a);
printf("The value of the variable a_ptr = %p\n", a_ptr);
printf("The value pointed to by a_ptr = %d\n", *a_ptr);
Output:

The value of the variable a = 4
The address of the variable a = 0x7ffd1be9fb8c
The value of the variable a_ptr = 0x7ffd1be9fb8c
The value pointed to by a_ptr = 4

Variable a is stored very high in the user-space memory, because int a
defines a stack variable.

33

Heap addresses

We can print the address of a variable:
int* a_ptr = malloc(sizeof(int));
a_ptr = 4; / https://xkcd.com/221/ */
printf("The value stored at a_ptr = %d\n", *a_ptr);
printf("The value of a_ptr = %p\n", a_ptr);
free(a_ptr); /* need to manually manage heap */

Output:

The value a = 4
The addr &a = 0x55b899d552a0

a_ptr is somewhere halfway user-space memory, as it is on the heap.
Note that we have been writing *a_ptr to dereference the pointer, to
get the value stored at the address!

34

Heap addresses

We can print the address of a variable:
int* a_ptr = malloc(sizeof(int));
a_ptr = 4; / https://xkcd.com/221/ */
printf("The value stored at a_ptr = %d\n", *a_ptr);
printf("The value of a_ptr = %p\n", a_ptr);
free(a_ptr); /* need to manually manage heap */

Output:

The value a = 4
The addr &a = 0x55b899d552a0

a_ptr is somewhere halfway user-space memory, as it is on the heap.
Note that we have been writing *a_ptr to dereference the pointer, to
get the value stored at the address!

34

Heap addresses

We can print the address of a variable:
int* a_ptr = malloc(sizeof(int));
a_ptr = 4; / https://xkcd.com/221/ */
printf("The value stored at a_ptr = %d\n", *a_ptr);
printf("The value of a_ptr = %p\n", a_ptr);
free(a_ptr); /* need to manually manage heap */

Output:

The value a = 4
The addr &a = 0x55b899d552a0

a_ptr is somewhere halfway user-space memory, as it is on the heap.

Note that we have been writing *a_ptr to dereference the pointer, to
get the value stored at the address!

34

Heap addresses

We can print the address of a variable:
int* a_ptr = malloc(sizeof(int));
a_ptr = 4; / https://xkcd.com/221/ */
printf("The value stored at a_ptr = %d\n", *a_ptr);
printf("The value of a_ptr = %p\n", a_ptr);
free(a_ptr); /* need to manually manage heap */

Output:

The value a = 4
The addr &a = 0x55b899d552a0

a_ptr is somewhere halfway user-space memory, as it is on the heap.
Note that we have been writing *a_ptr to dereference the pointer, to
get the value stored at the address!

34

	Introduction
	Undefined behaviour
	Abstracting away from bytes in memory
	Integer representations

