
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 1, 26 pages.

https://doi.org/10.62056/anjbksdja
Check for updates

Optimizations and Practicality of High-Security
CSIDH

Fabio Campos1 , Jorge Chávez-Saab3 , Jesús-Javier Chi-Domínguez3 ,
Michael Meyer4 , Krijn Reijnders2 , Francisco Rodríguez-Henríquez3 ,

Peter Schwabe5,2 and Thom Wiggers6

1 RheinMain University of Applied Sciences, Wiesbaden, Germany
2 Radboud University, Nijmegen, The Netherlands

3 Cryptography Research Center, Technology Innovation Institute, Abu Dhabi, United Arab
Emirates

4 University of Regensburg, Regensburg, Germany
5 Max Planck Institute for Security and Privacy, Bochum, Germany

6 PQShield, Nijmegen, The Netherlands

Abstract. In this work, we assess the real-world practicality of CSIDH, an isogeny-
based non-interactive key exchange. We provide the first thorough assessment of
the practicality of CSIDH in higher parameter sizes for conservative estimates of
quantum security, and with protection against physical attacks.
This requires a three-fold analysis of CSIDH. First, we describe two approaches to
efficient high-security CSIDH implementations, based on SQALE and CTIDH. Second,
we optimize such high-security implementations, on a high level by improving several
subroutines, and on a low level by improving the finite field arithmetic. Third, we
benchmark the performance of high-security CSIDH. As a stand-alone primitive, our
implementations outperform previous results by a factor up to 2.53×.
As a real-world use case considering network protocols, we use CSIDH in TLS
variants that allow early authentication through a NIKE. Although our instantiations
of CSIDH have smaller communication requirements than post-quantum KEM and
signature schemes, even our highly-optimized implementations result in too-large
handshake latency (tens of seconds), showing that CSIDH is only practical in niche
cases.
Keywords: post-quantum cryptography · isogenies · CSIDH · TLS

1 Introduction
The commutative isogeny-based key exchange protocol (CSIDH) was proposed by Castryck
et al. [Cas+18] at Asiacrypt 2018. Although it was proposed too late to be included as a
candidate in the NIST post-quantum standardization effort [Nat17], it has since received
significant attention from the post-quantum-crypto research community.

Author list in alphabetical order; see https://www.ams.org/profession/leaders/CultureSt
atement04.pdf. This work has been supported by the German Federal Ministry of Education and
Research (BMBF) under the projects 6G-RIC (ID 16KISK033) and SASPIT (ID 16KIS1858); by Deutsche
Forschungsgemeinschaft (DFG, German research Foundation) as part of the Excellence Strategy of the
German Federal and State Governments – EXC 2092 CASA - 390781972; and by the European Commission
through the ERC Starting Grant 805031 (EPOQUE).

E-mail: campos@sopmac.de (Fabio Campos), jorge.saab@tii.ae (Jorge Chávez-Saab), jesus.
dominguez@tii.ae (Jesús-Javier Chi-Domínguez), michael@random-oracles.org (Michael Meyer),
krijn@cs.ru.nl (Krijn Reijnders), francisco.rodriguez@tii.ae (Francisco Rodríguez-Henríquez),
peter@cryptojedi.org (Peter Schwabe), thom@thomwiggers.nl (Thom Wiggers)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-01-09 Accepted: 2024-03-05

https://doi.org/10.62056/anjbksdja
https://crossmark.crossref.org/dialog/?doi=10.62056/anjbksdja&domain=pdf&date_stamp=2024-03-20
https://orcid.org/0000-0003-3912-7570
https://orcid.org/0000-0002-7006-1779
https://orcid.org/0000-0002-9753-7263
https://orcid.org/0009-0000-2972-7324
https://orcid.org/0009-0002-8015-399X
https://orcid.org/0000-0002-5916-6625
https://orcid.org/0000-0002-1310-0997
https://orcid.org/0000-0001-8967-8456
https://www.ams.org/profession/leaders/CultureStatement04.pdf
https://www.ams.org/profession/leaders/CultureStatement04.pdf
mailto:campos@sopmac.de
mailto:jorge.saab@tii.ae
mailto:jesus.dominguez@tii.ae
mailto:jesus.dominguez@tii.ae
mailto:michael@random-oracles.org
mailto:krijn@cs.ru.nl
mailto:francisco.rodriguez@tii.ae
mailto:peter@cryptojedi.org
mailto:thom@thomwiggers.nl
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Optimizations and Practicality of High-Security CSIDH

From a crypto-engineering point of view, this attention can be explained by two
unique features of CSIDH: Firstly, with the originally proposed parameters, CSIDH has
remarkably small bandwidth requirements. Specifically, CSIDH-512, the parameter set
targeting security equivalent to AES-128, needs to transmit only 64 bytes each way, more
than 10 times less than Kyber-512, the KEM chosen for standardization by NIST [Nat23].
Secondly—and more importantly—CSIDH is so far the only realistic option for post-
quantum non-interactive key exchange (NIKE), meaning it can be used as a post-quantum
drop-in replacement for Diffie–Hellman (DH) key exchange in protocols that combine
ephemeral and static DH key shares non-interactively. Such protocols include the Signal
X3DH handshake [MP16] and early proposals for TLS 1.3 [KW16], known as OPTLS. The
OPTLS authentication mechanism is still under consideration as an extension [RSW20].
CSIDH is the only post-quantum NIKE that might enable these use cases, except for the
recently-proposed Swoosh algorithm [Gaj+24] (which has too-large public keys for use in
TLS).

Unfortunately, quite soon after CSIDH was proposed, several security analyses called
into question the claimed concrete security against quantum attacks achieved by the
proposed parameters [BS20; Pei20; Chá+22]. The gist of these analyses seems troublesome;
Peikert [Pei20] states that “the cost of CSIDH-512 key recovery is only about 216 quantum
evaluations using 240 bits of quantumly accessible classical memory (plus relatively small
other resources)”. Similarly, Bonnetain and Schrottenloher [BS20] claim a cost of 219

quantum evaluations for attacking the same instance, and propose a quantum circuit
requiring only 252.6 T-gates per evaluation, which means the security would still be
insufficient. Upon exploring the quantum cost of attacking larger instances but ignoring
the cost per CSIDH quantum evaluation, instances may require 2048 to 4096 bit keys to
achieve the security level originally claimed by CSIDH-512 [Chá+22].

Interestingly, although some of these concerns were raised as early as May 2018 (i.e.,
at a time when [Cas+18] was available only as preprint), most research on efficient
implementations [MCR19; Onu+19; Cer+19; Ban+21], side-channel attacks [Cam+22],
and fault attacks against CSIDH [Cam+20; LH20; Ban+23] continued to work with the
original parameters. This can probably partly be explained by the fact that the software
implementation referenced in [Cas+18]1 implements only the smaller two of the three
original parameter sets, i.e., CSIDH-512 and CSIDH-1024. However, another reason is
that the concerns about the quantum security of CSIDH were (and to some extent still
are) subject of debate. Most notably, Bernstein, Lange, Martindale, and Panny [Ber+19]
point out that one issue with quantum attacks against CSIDH is the rather steep cost of
implementing CSIDH on a quantum computer in the first place. They conclude that the
cost of each query pushes the total attack cost above 280.

In this paper, we do not take any position in this ongoing debate but rather set out
to answer the question of what it means for CSIDH performance and applicability if we
choose more conservative parameters. This includes protection against physical attacks,
which is often required for real-world applications. We call such instantiations high-security
CSIDH.
Contributions of this paper. The core contribution of this paper is an in-depth
assessment of the real-world practicality of CSIDH.2 On a high level, this assessment is
divided into three parts. First, we instantiate CSIDH at high(er) security levels, suitable for
real-world applications, and with protection against physical attacks; second, we optimize
the efficiency of high-security CSIDH; third, we test the practicality of high-security
CSIDH.

1. Efficient CSIDH instantiations, following two different approaches of implementing
1Available from https://yx7.cc/code/csidh/csidh-latest.tar.xz
2All our work follows the “constant-time” paradigm for cryptographic implementations and thus protects

against timing attacks by avoiding secret-dependent branch conditions and memory indices.

https://yx7.cc/code/csidh/csidh-latest.tar.xz

Campos et al. 3

high-security CSIDH.

(a) The first approach aims at protection against physical attacks, and is based on
SQALE [Chá+22]. In this approach, we eliminate randomness requirements
and the use of dummy operations in CSIDH by restricting the keyspace to
{−1, 1}n, as proposed by Cervantes-Vázquez et al. [Cer+19]. We refer to this
deterministic version of CSIDH as dCSIDH.

(b) The second approach optimizes purely for performance and uses the CTIDH
batching techniques introduced in [Ban+21]. We refer to this variant of CSIDH
as CTIDH. In particular, we extend the implementation from [Ban+21] to larger
parameter sets.

2. Optimized implementation of dCSIDH and CTIDH.

(a) On a high level, we present faster key validation for large parameters, and
add a small number of bits to public keys to improve shared-key generation in
dCSIDH.

(b) On a low level, we improve the finite field arithmetic. Our implementations use
curves over large prime fields Fp, where p ranges from 2048 to 9216 bits. We
optimize arithmetic in these fields for 64-bit Intel processors, specifically the
Skylake microarchitecture, using three different options for the underlying field
arithmetic.

• an approach based on the GNU Multiple Precision Library (GMP)
• MULX-based multiplier using the schoolbook approach (OpScan)
• MULX-based multiplier using the Karatsuba approach (Karatsuba)

3. Practicality benchmark of dCSIDH and CTIDH.

(a) As a standalone primitive, we benchmark our optimized C/assembly implemen-
tations. Our dCSIDH implementation outperforms previous implementations
by a factor up to 2.53×. Our CTIDH implementation is the first using large
parameters, and, dropping determinism, is thrice as fast as dCSIDH.

(b) As a real-world use case, we benchmark both dCSIDH and CTIDH in real-
world network protocols. We extend the Rustls library [Bir23] to support
OPTLS [KW16]. OPTLS is a variant of the TLS 1.3 handshake that heavily
relies on NIKE for authentication, and avoids handshake signatures (which are
especially large (Dilithium [Lyu+22]) or hard to implement (Falcon [Pre+22])
in the post-quantum setting). We compare the performance of the result-
ing post-quantum OPTLS to post-quantum KEMTLS [SSW20], which is an
OPTLS-inspired protocol that uses KEMs for authentication to avoid handshake
signatures (but requires significant changes to the handshake protocol). Our
results show that dCSIDH and CTIDH are too slow for general-purpose use, as
a fully CSIDH-instantiated handshake protocol, though smaller in bandwidth
requirements, is orders of magnitude slower than an equivalent based on signa-
tures or KEMs. This implies that current NIKE-based protocols will require
changes to transition to post-quantum security, if they are sensitive to latency.

Related work. The impact of the CSIDH proposal on the cryptographic community can be
assessed by the many papers that have been produced around this protocol. Since Castryck
et al. [Cas+18] left open the problem of implementing CSIDH in constant-time, several
papers have proposed different strategies for achieving this property.

The first constant-time implementation of CSIDH, by Bernstein, Lange, Martindale, and
Panny [Ber+19], focused on assessing the quantum security level provided by CSIDH. For

4 Optimizations and Practicality of High-Security CSIDH

this purpose, the authors strive for producing not only a constant-time CSIDH instantiation
but also a randomness-free implementation of it. Meyer, Campos, and Reith [MCR19] (see
also [MR18]) present a more efficient constant-time instantiation of CSIDH for practical
purposes. They introduce several algorithmic tricks, including the SIMBA technique, and
sampling secret keys from varying intervals, which are further improved by Onuki, Aikawa,
Yamazaki, and Takagi [Onu+19], who propose to keep track of two points to evaluate the
action of an ideal: one in E(Fp), and one in E(Fp2) with its x-coordinate in Fp. Moreover,
Moriya, Onuki, and Takagi [MOT20], and Cervantes-Vázquez et al. [Cer+19], perform
more efficient CSIDH isogeny computations using the twisted Edwards model of elliptic
curves. The authors of [Cer+19] propose a more computationally demanding dummy-free
variant of CSIDH. In exchange, this variant is arguably better suited to resist physical
attacks from stronger adversaries, such as fault attacks.

A second wave of studies around CSIDH improve several crucial building blocks. First,
a framework that adapts optimal strategies à la SIDH/SIKE to the context of CSIDH
[Hut+20; CR22b]. Second, improving the computation of large-degree isogenies using an
improved version of Vélu’s formulas known as

√
élu [Ber+20]. Several later variants of

CSIDH [ACR22; Ban+21] use these improvements. Other works [CD20; CR22a; Cas+22].
explore even more variants of CSIDH.

The introduction of CTIDH by Banegas et al. [Ban+21] achieved a breakthrough in
the performance of constant-time CSIDH, resulting in an almost twofold speedup, using a
new key space and accompanying constant-time algorithms to exploit the idea of batching
isogeny degrees. However, they restrict their performance evaluation to primes of 512 and
1024 bits. In contrast, Chávez-Saab, Chi-Domínguez, Jaques, and Rodríguez-Henríquez
[Chá+22] presented SQALE, the first CSIDH implementation at higher security levels,
using primes of size 2000 bits up to 9000 bits. The software we present here starts from
their analysis and parameter sizes to reach NIST security levels 1 (equivalent AES-128)
and 3 (equivalent AES-192) under different assumptions about the efficiency of quantum
attacks, yet goes much further in optimizing the parameters and implementation techniques
than [Chá+22].

CSIDH is not the only attempt at building a post-quantum NIKE. Although the SIDH
protocol [JD11; CLN16] was known to be insecure in the static-static scenario [Gal+16],
Azarderakhsh, Jao, and Leonardi [AJL17] suggested that a NIKE can still be obtained at
the cost of many parallel executions of SIDH. However, recent attacks [CD23; Mai+23;
Rob23] completely break SIDH/SIKE, making this path to a NIKE unfeasible. The only
post-quantum NIKE not based on isogenies is based on (R/M)LWE and, according to
Lyubashevsky, goes back to “folkore” [Lyu17]. In 2018, de Kock [dKoc18] first analyzed
such a NIKE and the recently proposed Swoosh [Gaj+24] is a more concrete instantiation
of this approach. We discuss differences between CSIDH and Swoosh in more detail in
Section 7.

Availability of software. We place our CSIDH software into the public domain (CC0).
All software described in this paper and all measurement data from the TLS experiments
are available at https://github.com/kemtls-secsidh/code.

Organization of this paper. Section 2 presents the necessary background on isogeny-
based cryptography and introduces CSIDH and its CTIDH instantiation. Section 3 explains
how we instantiate dCSIDH and CTIDH and choose parameters for our optimized implemen-
tations. Section 4 introduces algorithmic optimizations that apply to our instantiations of
dCSIDH and CTIDH. Section 5 details our optimization techniques for finite field arithmetic,
in particular the efficient Karatsuba-based field arithmetic, and presents benchmarking
results for the group action evaluation for dCSIDH and CTIDH. Section 6 describes our
integration of dCSIDH and CTIDH into OPTLS and presents handshake performance
results. Finally, Section 7 concludes the paper and sketches directions for future work.

https://github.com/kemtls-secsidh/code

Campos et al. 5

2 Preliminaries

2.1 NIKEs vs. KEMs
We briefly recall the definitions of non-interactive key exchange (NIKE) and key-encapsulation
mechanism (KEM) as follows:

Definition 1. A non-interactive key exchange (NIKE) is a collection of two algorithms,
KeyGen and SharedKey, where

• KeyGen is a probabilistic algorithm that on input 1k, where k is a security parameter,
outputs a keypair (sk, pk); and

• SharedKey is a deterministic algorithm that on input a public key pk and a secret
key sk outputs a shared key K.

A NIKE is correct if for any (sk1, pk1)← KeyGen(1k) and (sk2, pk2)← KeyGen(1k) it holds
that SharedKey(pk1, sk2) = SharedKey(pk2, sk1).

Definition 2. A key-encapsulation mechanism (KEM) is a collection of three algorithms,
KeyGen, Encaps, and Decaps, where

• KeyGen is a probabilistic algorithm that on input 1k, where k is a security parameter,
outputs a keypair (sk, pk); and

• Encaps is a probabilistic algorithm that on input a public key pk outputs a ciphertext
ct and a shared key K.

• Decaps is a deterministic algorithm that on input a ciphertext ct and a secret key sk
outputs a shared key K.

A KEM is correct if for any (sk, pk)← KeyGen(1k) and (ct, K)← Encaps(pk) it holds that
Decaps(ct, sk) = K.

Both NIKEs and KEMs can be used for key exchange, but the non-interactive nature
of a NIKE makes it more flexible than a KEM. In the context of their use in protocols,
there are three different scenarios:

1. Some scenarios naturally use a KEM. Those scenarios can alternatively also use
a NIKE, but they do not benefit in any way from the non-interactive nature of a
NIKE. An example for this scenario is the ephemeral key exchange in TLS 1.3, which
currently uses (EC)DH, but will easily migrate to post-quantum KEMs [Bos+15;
Bra16; Lan18; KV19; WR22].

2. Some protocols, most notably the X3DH protocol in Signal [MP16] have to use a
NIKE and cannot replace this NIKE by a KEM. The reason is that this protocol
cannot assume communication partners to be online at the same time and critically
relies on the non-interactive nature of a NIKE.

3. Some protocols are somewhat in between: they can be designed from KEMs only,
but this comes at the cost of more communication rounds. This has been discussed
in some detail in the design of post-quantum Noise [Ang+22] and also in the context
of the NIKE-based OPTLS [KW16] vs. the KEM-based KEMTLS [SSW20]. We will
revisit the comparison of these two protocols in a post-quantum context in more
detail in Section 6.

6 Optimizations and Practicality of High-Security CSIDH

2.2 The CSIDH NIKE

Background. Let Fp be a finite field of prime order p, such that p + 1 = f ·
∏n

i=1 ℓi,
where each ℓi is a small odd prime, and f is a cofactor of the form 2k · g with k ≥ 2 and g
possibly 1, guaranteeing that p is prime. Now consider the set of supersingular elliptic
curves over Fp, i.e., the elliptic curves with p + 1 Fp-rational points. We will represent
these curves in the Montgomery model, i.e., through an equation of the form

EA : y2 = x3 + Ax2 + x, A ∈ Fp. (1)

This is possible since the group order (p + 1) is a multiple of 4. In the context of CSIDH we
are interested in isogeny graphs of degree N , denoted GN (Fp). The vertices of such graphs
are precisely the supersingular curves over Fp; the edges are Fp-rational isogenies of degree
N . CSIDH relies on the following property: for each small odd prime ℓi dividing p + 1, a
supersingular curve EA has only two (supersingular) neighbors in the isogeny graph Gℓi(Fp)
(i.e., isogenies over Fp of degree ℓi). We can uniquely describe these isogenies by their
kernels: The unique cyclic subgroup of order ℓi of EA(Fp) defines the isogeny from EA to
one of these neighbors EA′ . This cyclic subgroup can be described by any of its generators,
which in this case means that finding a point in EA(Fp) of order ℓi is enough to describe
an isogeny of degree ℓi. As EA′ is again supersingular, EA′(Fp) has order p + 1 as well and
hence a unique cyclic subgroup of order ℓi, which gives an isogeny to the unique neighbor
that is not EA. The general action of moving in this direction in this graph Gℓi

(Fp) using
the unique subgroup of order ℓi is denoted by li, and the curve EA′ that is reached from
EA by this action is denoted li ∗EA. In short, li represents one step in the isogeny graph
Gℓi

(Fp), and each small odd prime ℓi dividing p + 1 gives us such an li. Steps in Gℓi
(Fp),

represented by li, are commutative, so that applying li to lj ∗EA is the same as applying lj
to li ∗EA for different degrees ℓi and ℓj . We can also compute steps in the other direction,
which is denoted by l−1

i ∗EA. The subgroup of points of order ℓi with x-coordinate in Fp

and y-coordinate in Fp2\Fp uniquely defines the corresponding isogeny kernels. Applying
both li and l−1

i effectively cancels out, i.e., we have li ∗ (l−1
i ∗ E) = l−1

i ∗ (li ∗ E) = E.

The CSIDH scheme. The CSIDH scheme [Cas+18] unrolls naturally from the action
described above: The secret key is a vector of n integers (e1, . . . , en) defining the product
a =

∏n
i=1 l

ei
i . In the original proposal the integers ei are chosen from {−m, . . . , m} for some

m ∈ N, which results in a key space of size (2m + 1)n. The public key is the supersingular
curve EA which corresponds to the secret key a applied to a publicly known starting curve
E0:

EA = a ∗ E0 = le1
1 ∗ · · · ∗ len

n ∗ E0. (2)
This public key EA can be encoded by the single value A ∈ Fp (see Equation (1)). Shared-
key computation is the same as public-key computation, except that instead of the public
parameter E0 it uses a public key EA as input curve. That is, Alice and Bob compute their
shared secret by calculating EAB = a ∗EB = (a · b) ∗E0 and EBA = b ∗EA = (b · a) ∗E0,
respectively, with EAB = EBA thanks to the commutativity. This is summarized by the
following diagram:

E0 EA

EB EAB

a

a

b b

Computing the group action a ∗ E. Straightforward high-level pseudocode for the
computation of the group action a ∗ E is given in Algorithm 1. The dominating cost is
the construction and evaluation of the ℓi-isogenies corresponding to the action of the li

Campos et al. 7

(Lines 5 and 7), which in turn decompose into a sequence of operations in Fp. However, the
high-level view also illustrates an additional complication for secure implementations of
CSIDH, namely that the number of iterations of the inner loop (Line 3) and the direction
of the isogenies corresponding to the action of li (Line 4) depend on the secrets ei and
naive implementations thus leak secret information through timing.

Algorithm 1 High-level view of the CSIDH group action computation.
Input: I ∈ Fp defining a curve EI

Input: secret key (e1, . . . , en)
Output: R ∈ Fp defining a curve ER = le1

1 ∗ · · · ∗ len
n ∗ EI

1: ER ← EI

2: for i from 1 to n do
3: for j from 1 to |ei| do
4: if ei > 0 then
5: ER ← li ∗ ER

6: else
7: ER ← l−1

i ∗ ER

8: end if
9: end for

10: end for
11: return R

For constant-time behavior, we need to be careful not to leak this information on ei.
Current implementations of CSIDH hide ei by computing m isogenies per degree ℓi, while
effectively performing |ei| isogenies, e.g., by using dummy computations or computations
that effectively cancel each other such as li ∗ l−1

i ∗ E.
For the sake of simplicity, Algorithm 1 omits the description of several underlying

building blocks. For example, the computation of an isogeny of degree ℓi requires as
input a point of order ℓi. Points of a prescribed order can be obtained probabilistically
by sampling random points on the current curve. Any randomly sampled point T can
generate exactly one isogeny of those degrees ℓi that divide the order of T , by pushing
T through such isogenies to get a similar point T on the codomain curve. The order in
which we perform such ℓi-isogenies giving a point T that can perform multiple of them
influences the performance. Hence, different strategies, i.e. orderings of ℓi-isogenies, point
evaluations, and point multiplications, can affect performance. Several efficient strategies
are described in, e.g., [Cas+18; CR22b]. We describe our choices for the CSIDH group
action computation in more detail in Section 3 and Section 4.
Computing a single isogeny ER ← li ∗ ER. A single isogeny ER ← li ∗ ER can
be computed in multiple ways: Traditionally, the formulas introduced by Vélu [Vél71]
are used, at a cost of approximately 6ℓ field multiplications for an isogeny of degree ℓ.
In 2020, [Ber+20] presented new formulas for constructing and evaluating isogenies of
degree ℓ, at a combined cost of just Õ(

√
ℓ) field multiplications, denoted as

√
élu. With

respect to CSIDH, [ACR22] reports that the
√

élu formulas of [Ber+20] improve the
traditional formulas for isogenies of degree ℓ ≥ 89, and concludes that constant-time
CSIDH implementations using 511- and 1023-bit primes are moderately improved by the√

élu formulas. The authors from [CD20] presented a variant of CSIDH named CSURF,
which essentially proposes using 2-isogenies by calculating radical computations (i.e., by
performing exponentiation with a fixed exponent along with a field inversion). [CDV20]
extended the radical approach to compute isogenies for odd isogeny degrees less than
13. Both works suggest a modest savings in the running time of CSIDH and essentially
CSURF can be considered CSIDH with radical isogenies of degree 2. On the one side,
the authors from [CR22a] improved the formulas from [CD20; CDV20] by presenting an

8 Optimizations and Practicality of High-Security CSIDH

inverse-free method to compute such radical isogenies at the cost of a single exponentiation.
Conversely, the recent work from [Cas+22] provided some interesting improvements
(in terms of field multiplication) to the results from [CDV20]; they still require one
exponentiation by a fixed exponent and at least one field inversion, which are the bottleneck.
Nevertheless, [CR22a] additionally showed that such radical isogenies become too costly in
large CSIDH parameters. On that basis, we will not make use of the radical isogenies, as
the analysis from [CR22a] shows that this is unfavorable when the base field Fp is larger
than 1024 bits.

2.3 CTIDH
Banegas et al. [Ban+21] proposed a new approach for constant-time CSIDH, named
CTIDH. The main novelties are a different way of specifying the key spaces, and some
algorithmic adaptions in order to obtain a constant-time algorithm.

CTIDH key spaces. For defining CTIDH keyspaces, we organize the primes ℓi in N
batches, such that each batch consists of consecutive primes. In particular, we choose a
vector of batch sizes N = (N1, . . . , NB) with all Ni > 0, such that

∑B
i=1 Ni = n. Then

we distribute the n prime degrees ℓ1, . . . , ℓn among those B batches. That is, we define
the first batch as (ℓ1,1, . . . , ℓ1,N1) := (ℓ1, . . . , ℓN1), the second batch as (ℓ2,1, . . . , ℓ2,N2) :=
(ℓN1+1, . . . , ℓN1+N2), etc. Accordingly, we relabel the private key elements ek as ei,j .

Instead of directly sampling the key elements ei,j from some interval [−m, m] as in
CSIDH, CTIDH only limits the 1-norm of each key batch. That is, for the i-th batch
(ℓi,1, . . . , ℓi,Ni

), we fix a bound mi and sample corresponding key elements ei,j such that∑Ni

j=1 |ei,j | ≤ mi. This means that for each isogeny we compute for the i-th batch, its
degree could be any of ℓi,1, . . . , ℓi,Ni . This adds a combinatorial advantage, in the sense
that the same number of isogenies as in CSIDH leads to a much larger key space size in
CTIDH. In other words, CTIDH requires a smaller number of isogenies for reaching the
same key space size. For example, the fastest previous constant-time implementation of
CSIDH-512 with key space size 2256 required the computation of 438 isogenies, while the
CTIDH parameters of [Ban+21] only requires 208 isogenies for the same key space size.
For details, we refer to [Ban+21]. We note that as defined above, CSIDH is a special case
of CTIDH using n batches of size 1.

CTIDH algorithm. The main problem for constant-time implementations with this
adapted key space lies in the fact that we must hide the degree of each isogeny from
side channels. Given that the computational effort for an isogeny directly depends on
its degree, a straightforward implementation of CTIDH would leak the degree of each
isogeny. On the other hand, an attacker must not be able to observe to which degree out
of {ℓi,1, . . . , ℓi,Ni

} each isogeny for the i-th batch corresponds. [Ban+21] achieves this by
using an observation from [Ber+19]. The usual isogeny formulas [Vél71; Ber+20], have
a Matryoshka-doll structure. That is, if ℓi < ℓj , then an ℓj-isogeny performs exactly the
computations that an ℓi-isogeny would require, plus some extra operations. Therefore,
we can easily compute an ℓi-isogeny at the cost of an ℓj-isogeny, by performing dummy
operations for the extra steps. In CTIDH, we use this idea to compute each isogeny for the
i-th batch (ℓi,1, . . . , ℓi,Ni

) at the cost of the most expensive degree, i.e., an ℓi,Ni
-isogeny.

In this way, the isogeny degrees do not leak via timing channels.
There are several other operations that require adjustments in CTIDH in order to

obtain a constant-time implementation. For instance, this includes scalar multiplications
that produce points of suitable order, or point rejections, which must occur independently
of the required isogeny degree. For details on how these issues are resolved, we refer
to [Ban+21].

Even though these algorithmic adjustments induce some computational overhead,

Campos et al. 9

CTIDH is almost twice as fast as its CSIDH counterpart for the CSIDH-512 and CSIDH-
1024 parameter sets from [Cas+18] (see [Ban+21]).

2.4 Quantum security
While classical security imposes a restriction on the minimum key space size, quantum
security usually poses more restrictive requirements. However, it is argued in [Chá+22]
that for reasonable key spaces (that is, spaces large enough to achieve classical security),
the quantum security of CSIDH relies only on the size of the prime p, regardless of the size
of the actual key space being used. This is due to the fact that the most efficient quantum
attack, Kuperberg’s algorithm [Kup13], requires working over a set with a group structure.
Since the entire group representing all possible isogenies is of size roughly √p,3 this attack
needs to search a space much larger than the keyspace itself, which only depends on n
and the exponent bound m. For example, in the case of CSIDH-512, the element l3 alone
generates the entire group of size roughly 2257 [BKV19]. It is expected that a handful
of li generate the entire group also for larger instances. In a nutshell, classical security
is determined by the size of the key space, whereas quantum security is determined by
the size of p, as long as the key space is not chosen particularly badly, e.g., as a small
subgroup of the full class group.

3 Proposed instantiations of CSIDH
In this section, we describe how to instantiate and choose parameters for large-parameter
CSIDH. We describe two different approaches to selecting parameters: dCSIDH targets
a deterministic and dummy-operation-free implementation4, whereas CTIDH optimizes
for the batching strategies proposed in [Ban+21]. This reflects the two extreme choices
one can make to either prioritize security against physical attacks or speed. We note that
there are several choices in the middle ground, trading off physical security for speed. For
comparability, both approaches share the choice of underlying finite fields Fp, which we
detail in Section 3.1.

3.1 The choice of p

In this work, we take the conservative parameter suggestions from [Chá+22] at face value.
In particular, we consider primes of 2048 and 4096 bits to target NIST security level 1, 5120
and 6144 bits to target NIST security level 2, and 8192 and 9216 bits to target NIST security
level 3. Each pair of bitsizes represents a choice between more “aggressive” assumptions
(with attacker circuit depth bounded by 260) or more “conservative” assumptions (attacker
circuit depth bounded by 280). As stressed in [Chá+22], this choice of parameters does not
take into account the cost of calls to the CSIDH evaluation oracle on a quantum computer
and is likely to underestimate security. However, as discussed in Section 1, we merely aim
at giving performance results for conservative parameters.

All our implementations use primes of the form p = f ·
∏n

i=1 ℓi−1, where ℓi are distinct
odd primes, f is a large power of 2 and n denotes the number of such ℓi dividing p + 1.
For these sizes of p, it becomes natural to pick secret key exponents ei ∈ {−1, +1}, as
n can be chosen large enough to reach the desired keyspace size [Cer+19; Chá+22]. In
particular, to achieve a keyspace of b bits in CSIDH we need to have at least n = b of
these ℓi in this case.

3The li represent elements of the class group Cℓ(Z[√p]), which has size roughly √
p.

4Our implementation does not take the recent physical attacks [Cam+22; Ban+23] into account, whose
impact in the high-parameter range is unclear. Heuristically, countermeasures against both attacks should
not impact performance by much.

10 Optimizations and Practicality of High-Security CSIDH

Table 1: Parameters for reconstructing each prime p = f ·
∏n

i=1 ℓi − 1. In each case the
ℓi are assumed to be the first n odd primes, excluding some primes and including larger
primes ℓi to ensure that p is prime. These are given in the Excluded and Included columns.

Prime bits f n Excluded Included Key Space NIST level
p2048 264 226 {1361} − 2221 1 (aggressive)
p4096 21728 262 {347} {1699} 2256 1 (conservative)
p5120 22944 244 {227} {1601} 2234 2 (aggressive)
p6144 23776 262 {283} {1693, 1697, 1741} 2256 2 (conservative)
p8192 24992 338 {401} {2287, 2377} 2332 3 (aggressive)
p9216 25440 389 {179} {2689, 2719} 2384 3 (conservative)

For conservative instances, we base the keyspace sizes on the classical meet-in-the-
middle (MITM) attack considered in [Cas+18], requiring b = 2λ for security parameter
λ. That is, b = 256, 256, 384 for p4096, p6144, p9216, respectively5. On the other
hand, for aggressive instances we based the keyspace size on the limited-memory van
Oorschot-Wiener golden collision search [vW99] with the assumptions from [Chá+22],
which leads to b = 221, 234, 332 for p2048, p5120, p8192, respectively.

Finally, we restrict to cofactors f for which the power of 2 is a multiple of 64, since the
arithmetic optimizations discussed in Section 5 require this shape. Hence, to find optimal
primes for our implementation, we let ℓ1, . . . , ℓb be the b smallest odd primes and then
compute the cofactor f as the largest power of 264 that fits in the leftover bitlength. This
still leaves us with a bitlength slightly smaller than the target, and hence the leftover bits
can be used to search for additional factors ℓi (making n > b) that make f ·

∏n
i=1 ℓi − 1

a prime number. These extra factors go unused for dCSIDH, where they are viewed as
part of the cofactor, but are exploited by the batching strategies of CTIDH to increase
performance. We set a minimum requirement of 5 additional ℓi factors (that is, n ≥ b + 5),
decreasing f by a single factor of 264 when not enough bits were left over. The results of
this search are shown in Table 1.

3.2 Parameters for dummy-free, deterministic dCSIDH
The restriction of exponents to {−1, +1} makes it easier to make dCSIDH deterministic and
dummy free [Cer+19; Chá+22], as we always perform only one isogeny of each degree, with
the only variable being the “direction” of each isogeny. Since isogenies in either direction
require exactly the same operations, it is easy to obtain a constant-time implementation
without using dummy operations.

Randomness appears in the traditional CSIDH implementation: it arises from the fact
that performing isogenies of degree ℓi requires a point of order ℓi as input, and such a
point is obtained by sampling random points on the current curve. Any random point can
either be used for “positive” steps l+1

i or “negative” steps l−1
i . Hence, a point of order ℓi

can be used only once and only for a specific orientation. Doing more than one isogeny of
each degree requires us, therefore, to sample new points midway. However, by restricting
ei to {−1, +1}, we have to compute only one isogeny per degree ℓi. This allows us to
avoid random sampling by providing a pair of points T+, T− beforehand whose orders are
divisble by all ℓi, where T+ can be used for the positive steps li with ei = 1, and T− for
the negative steps l−1

i , with ei = −1. We refer to such points as full-torsion points, as they
allow us to perform an isogeny of every degree ℓi by multiplying them by the right scalar.
That is, to perform an ℓi-isogeny in the “plus” direction, we can use the point [p+1

ℓi
] T+ of

5Since conservative instances don’t take memory restrictions into account, security levels 1 and 2 have
the same key space requirements. They only differ in the size of the prime due to quantum security
concerns as described in [Chá+22].

Campos et al. 11

order ℓi.
Note that the probability for the order of a random point to contain the factor ℓi is

given by ℓi−1
ℓi

. Thus, sampling for a pair of full-torsion points can be expensive when small
factors ℓi are used, as they dominate the probability

∏
i

ℓi−1
ℓi

of sampling a full-torsion
point. Since the primes we use always have additional ℓi factors that are unused in dCSIDH
(see Section 3.1), we make point sampling more efficient by always discarding the smallest
primes rather than the largest ones, increasing the odds to sample a full-torsion point.
For example, the prime p4096 has 262 ℓi factors but only needs a keyspace of 2256, hence
we can discard 6 primes. By discarding the 6 smallest ones, the probability to sample a
full-torsion point goes up from

∏256
i=1

ℓi−1
ℓi
≈ 0.151 to

∏262
i=7

ℓi−1
ℓi
≈ 0.418, making it more

than 2.7 times as easy to sample full-torsion points T+ and T−. Such a shift in primes
causes a trade-off in the rest of the protocol, as higher-degree isogenies are more expensive.
However, due to the improvements in [Ber+20], the extra cost of using ℓ257, . . . , ℓ262
instead of ℓ1, . . . , ℓ6 is relatively small in comparison to the total cost of a group action
computation. Thus, discarding the smallest ℓi is preferable as it significantly decreases the
cost of sampling full-torsion points, and only increases the cost of computing a ∗ E by a
marginal amount.

The points T+, T− on the starting curve E0 can be precomputed and considered public
parameters, but for the public-key curves they must be computed in real time. We include
the computation of these points in the key generation, and include them in the public key,
which makes the shared-secret derivation completely constant-time and deterministic. The
key generation is then the only part that does not run in strictly constant wall-clock time
(yet is implemented following the constant-time paradigm), but is still made deterministic
by sampling points in a pre-defined order. As we describe in Section 4, these points can
be represented in a very compact form, which increases public-key sizes by only a few bits.
We further emphasize that in order to avoid active attacks, the shared-key computation
must validate these transmitted points to be full-torsion points.

Following the SQALE implementation [Chá+22], we use the optimal strategy approach
from [CR22b] to efficiently evaluate the class group action.

3.3 Parameters for CTIDH
As mentioned above, the instantiations of dCSIDH that we use are designed as dummy-free
and deterministic algorithms, in order to avoid potential issues with randomness and
dummy operations. However, these choices induce significant computational overhead.
Therefore, we additionally give performance results for CTIDH [Ban+21], the fastest
available constant-time implementation of CSIDH (allowing randomness and dummy
operations), at the same security levels so that we can compare performance. Note
that [Ban+21] only reports performance results for 512-bit and 1024-bit primes.

For the parameter sizes considered in this work, we thus use the same primes as in the
dCSIDH case (see Table 1). This allows for a simple comparison of the two approaches,
since both implementations use the same finite field arithmetic (see Section 5). On the
other hand, it is unclear which parameters are optimal for CTIDH with the given prime
sizes. A larger number of small prime factors ℓi in the factorization of p + 1 can be
beneficial, since the combinatorial advantage of CTIDH batching increases with the number
of available prime degrees. On the other hand, this would mean that we have to include
larger ℓi, and therefore compute more expensive large degree isogenies. Furthermore, the
choice of CTIDH parameters, i.e., batches and norm bounds, becomes more challenging at
larger prime sizes. We thus leave the exploration of optimal CTIDH parameters for large
primes as future work.

For the given primes, we use the greedy algorithm from [Ban+21] for determining these
additional parameters, adapted to the case of the cofactor f > 4. On input of the primes

12 Optimizations and Practicality of High-Security CSIDH

ℓi and a fixed number of batches, the algorithm searches for a locally optimal way of
batching the primes, and according norm bounds, such that the expected number of field
multiplications per group action evaluation is minimized. However, for the parameter sizes
in this work, the greedy search becomes increasingly inefficient. We could thus only run
searches for a small set of potential batch numbers, especially for the larger parameters.
We obtained these potential inputs by extrapolating from the data of smaller parameter
sizes from [Ban+21] and slightly beyond. For concrete parameter choices, we refer to our
software. Note that the choice of a different number of batches could improve the results,
but an exhaustive search using the greedy algorithm seems out of reach.

Apart from the parameters and batching setup, our CTIDH implementation uses the
algorithms and strategies from [Ban+21]. We remark that CTIDH could in theory also be
implemented in a dummy-free or deterministic way. [Ban+21] presents an algorithm that
avoids dummy isogenies, but points out that the Matryoshka isogenies require dummy
operations by design. Thus, the current techniques do not allow for a dummy-free
implementation of CTIDH. Further, the design of a deterministic variant of CTIDH requires
some adaptions, such as computing multiple isogenies per batch in a single round. We
leave the design and analysis of such an implementation for future work.

4 Optimizing dCSIDH and CTIDH
Given the parameter choices from Section 3, we describe the high-level optimizations we
apply for dCSIDH and CTIDH. Note that apart from the improved public key validation,
we use the standard CTIDH implementation from [Ban+21] extended to the parameter
sizes from Section 3.3. For dCSIDH, we present several improvements in Section 4.2.

4.1 Supersingularity verification
For the prime choices from Section 3.1, we need to adapt the supersingularity verification
from [Cas+18]. In particular, given primes with cofactor log f > 1

2 log p, both algorithms
discussed in [Cas+18, Alg. 1 and Alg. 3] to test supersingularity of a public key EA do
not work.

Note that these supersingular tests, verify whether #EA(Fp) = p + 1, by showing
that there is a point P with large enough order N | p + 1. Both algorithms start by
sampling a random point P , followed by a multiplication by the cofactor P ← [f]P , and
then by checking whether the resulting point has ℓi-torsion. This is done by calculating
if [

∏
j ̸=i ℓj]P ̸= O and [

∏
ℓj]P = O. If the random point P has ℓi-torsion for enough ℓi

such that their product
∏

ℓi ≥ 4√p, then in the Hasse interval p + 1− 2√p ≤ #EA(Fp) ≤
p + 1 + 2√p, p + 1 is the only possible multiple of its order ord(P). This implies that
#EA(Fp) = p + 1. Unfortunately, this approach cannot be applied to our setting, because
for primes where log f > 1

2 log p, even a point with ℓi-torsion for all i does not reach the
threshold 4√p, as log(

∏
ℓi) = log p− log f ≤ 1

2 log p. We conclude that due to the large
cofactors included in the primes targeted in this work, [Cas+18, Alg. 1 and Alg. 3] cannot
perform a sound supersingularity test within our setting.

Luckily, in the primes as above, where f = 2k, we can improve this algorithm to verify
supersingularity: Instead of verifying that the order of a random point P has enough
ℓi-torsion, we verify P has 2k-torsion. When log f = k > 1

2 log p, verifying that P has
2k-torsion implies that EA must be supersingular by the same logic as above. Furthermore,
for Montgomery curves EA, we can sample P directly from EA(Fp) \ [2]EA by picking a
point with rational non-square x-coordinate [Cos+17]. This ensures we always sample P
with maximum 2k-torsion. Using x-only arithmetic, we only have to keep track of xP . We
name this approach to verify supersingularity VeriFast, as described in Algorithm 2.

Campos et al. 13

Algorithm 2 VeriFast: Supersingularity verification for primes with cofactor 2k > 4√p.
Input: A ∈ Fp defining a curve EA

Output: true or false, verifying the supersingularity of EA

1: xP ← 2, v2 ← 1
2: xP ← [p+1

f]xP

3: while xP ̸= O and v2 < k do
4: xP ← xDBL(xP), v2 ← v2 + 1
5: end while
6: if v2 > 1 + log p/2 and xP = O then
7: return true
8: end if
9: return false

VeriFast can be performed deterministically or probabilistically: Given a point with
rational non-square x-coordinate, the algorithm always returns v2 = k in case of super-
singularity. Otherwise, any random point is likely to have v2 close to k, and hence still
verifies supersingularity if the cofactor is a few bits larger than 4√p. For the probabilistic
approach, we pick xP = 2 ∈ Fp, hence P = (2,−), for all supersingularity checks. This has
the advantage that multiplication by 2 can be performed as a simple addition, and hence,
xP = 2 optimizes the arithmetic in the computation of xP ← [p+1

f]xP . Furthermore, the
bound 4√p can be improved to 2√p as this still implies p + 1 is the only multiple in the
Hasse interval. VeriFast is faster than any of the analyzed algorithms in [BGS22], with a
cost of O(log p). More specifically, it requires a scalar multiplication by a scalar of log p−k
bits and (at most) k point doublings, where f = 2k is the cofactor. In comparison to
Doliskani’s test [Dol18; BGS22], also of complexity O(log p), we have the advantage that
we can stay over Fp. The condition that k > 1 + 1

2 log p holds for our primes p5120 and
beyond. More importantly, even with the probabilistic approach, for these primes the
probability to sample a point that does not have large enough 2z-torsion is lower than
2−256. For the primes where k ≤ 1 + 1

2 log p, we can still use the 2k-torsion, as in VeriFast,
but we are required to also verify some ℓi-torsion to cross the bound 2√p. A comparison of
performance between VeriFast and previous methods is given in Table 2, showing VeriFast
is 28 to 38 times as fast for large primes. The hybrid method for k ≤ 1 + 1

2 log p still
achieves a significant speedup.

Table 2: Benchmarking results for supersingularity verification using VeriFast for primes
with cofactor k > 1

2 log p, and hybrid (marked with *) when k < 1
2 log p. Results

of [Chá+22] added for comparison. Numbers are median clock cycles (in gigacycles)
of 1024 runs on a Skylake CPU.

p2048* p4096* p5120 p6144 p8192 p9216
VeriFast 0.16 0.50 0.53 0.81 1.88 2.54
SQALE [Chá+22] 0.30 1.86 14.90 27.65 67.79 96.99

4.2 Optimized dCSIDH public keys
As described in Section 3.2, dCSIDH is dummy-free and deterministic by using secret key
exponents ei ∈ {−1, 1}, and public keys of the form (A, T+, T−). Recall, T+ and T− are
full-torsion points that can be used to perform positive steps l+1

i and negative steps l−1
i

respectively. For sampling suitable points T+ and T− for public keys during key generation,
we use the Elligator map (A, u) 7→ (T+, T−) from [Cer+19], with Montgomery parameter
A ∈ Fp and an Elligator seed u ∈ Fp. The output of Elligator is exactly such a pair of

14 Optimizations and Practicality of High-Security CSIDH

points T ′
+ and T ′

−, although they might not be full-torsion, that is, their respective orders
might not be divisible by all ℓi. Let P be either T+ or T−. To efficiently determine if P
is a full-torsion point, we follow the usual product-tree approach that was also applied
for public key validation in [Cas+18]. This requires us to compute

[
p+1
ℓi

]
P for each ℓi,

and checking that these points are not equal to the point at infinity. In order to obtain
a deterministic algorithm, we try Elligator seeds from a pre-defined sequence (u1, u2, . . .)
until we find full-torsion points T+ and T−. To determine which of the points T± is T+
resp. T−, Elligator requires a Legendre symbol computation. In the case of our proposed
dCSIDH configuration with public inputs A and u, we can use a fast non-constant-time
algorithm for the Legendre symbol computation as the one presented in Hamburg [Ham21].

Thus, a dCSIDH public key consists of an affine Montgomery coefficient A ∈ Fp, and
an Elligator seed u ∈ Fp such that elligator(A, u) returns two full-torsion points T+ and T−
on EA. We choose the fixed potential values for u small to get a public key (A, u) of only
log2(p) + ε bits for small ε > 0.

Finally, a user has to verify such a public key (A, u). For A, we verify EA is supersingular
as described in Section 4.1. For u, we verify that it generates two full-torsion points T+
and T−, by ensuring at the computation of each step l±1

i ∗ E that the correct multiple of
both T+ and T− are not the point at infinity (i.e., both have order ℓi) regardless of which
point we use to compute the step.
Remark 1. An alternative to finding and including an Elligator seed u ∈ Fp in the public
key is to find and include small x-coordinates x+ and x− that define full-torsion points
T+ = (x+,−) and T− = (x−,−). Information-theoretically, u and the pair (x+, x−) share
similar probabilities (to generate full-torsion points) and hence their bitlengths should be
comparatively small. One advantage of x+ and x− is that they can be found individually,
which should speed up their search. We choose, however, the more succinct approach using
u and Elligator.

5 Implementation
In this section, we describe the optimization steps at the level of field arithmetic to
speed up both variants of CSIDH we consider. First and foremost, to enable a fair
comparison, we implement a common code base for dCSIDH and CTIDH. Besides sharing
the same field arithmetic, both instantiations of CSIDH share all the underlying functions
required for computing the group action. However, some required parameters and the
strategy within the group action strongly differ between dCSIDH and CTIDH. In the case
of dCSIDH, the group action strategy and all the required parameters are based on the
implementation provided by [Chá+22]. In the case of CTIDH, we generate the batching
and other parameters using the methods provided by [Ban+21].

5.1 Low-level approaches for the field arithmetic layer
For the underlying field arithmetic, we implement three different approaches. They all
share the representation of integers in radix 264 and use Montgomery arithmetic for efficient
reductions modulo p.

1. To establish a performance baseline, our first method uses the low-level functions
for cryptography (mpn_sec_) of the GNU Multiple Precision Arithmetic Library
(GMP). Modular multiplication uses a combination of mpn_sec_mul and mpn_add_n to
implement Montgomery multiplication, i.e., interleaving multiplication with reduction.
We refer to this first approach as GMP.

2. The second approach extends the optimized arithmetic from [Cas+18], using the
MULX instruction, going from 512-bit and 1024-bit integers to the larger sizes we

Campos et al. 15

consider in this paper. Here, we also interleave multiplication with reduction; we
generate code for all field sizes from a Python script. We refer to this second approach
as OpScan.

3. Our third strategy uses Karatsuba multiplication [KO63] together with the MULX
optimizations used in our second approach. We describe this strategy, and in
particular an optimized reduction for primes of 5120 bits and above, in more detail
in Section 5.2. We refer to this third approach as Karatsuba.

We follow the earlier optimization efforts for CSIDH from [Cas+18; Chá+22; Ban+21]
and focus on optimizing our code primarily on Intel’s Skylake microarchitecture. More
specifically, we perform all benchmarks on one core of an Intel Core E3-1260L (Skylake) CPU
with hyperthreading and TurboBoost disabled. An overview of (modular) multiplication
performance of the three approaches for the different field sizes is given in Table 3. In the
following, we will focus on describing the fastest of the three strategies mentioned above,
i.e., Karatsuba, in more detail.

5.2 Optimized field arithmetic using MULX and Karatsuba
We present scripts to generate optimized code using the Karatsuba approach, based on
the OpScan approach. More precisely, compared to the OpScan approach, we achieve
speedups for multiplication, squaring, and reduction.

Table 3: Benchmarking results for multiplication and reduction. Numbers are median
clock cycles of 100000 runs on a Skylake CPU. Note that for the OpScan and the GMP
approach, we can only provide clock cycles for multiplication including reduction, due to
the interleaved Montgomery reduction.

Prime GMP OpScan Karatsuba
mult + redc mult + redc mult redc mult + redc

p2048 8662 4538 1442 2648 4090
p4096 34 030 20 318 4981 9777 14 758
p5120 51 671 33 676 8601 6528 15 129
p6144 74 338 53 746 10 210 9517 19 727
p8192 131 858 92 793 17 073 17 295 34 268
p9216 168 375 118 302 20 248 19 709 39 957

Multiplication. The implementation of Karatsuba follows careful considerations to
optimize performance. To improve efficiency, we select a breakout level into a MULX-based
schoolbook multiplication with a maximum of 9 × 9 limbs. By choosing this threshold,
the implementation aims to strike a balance between utilizing the benefits of Karatsuba’s
divide-and-conquer strategy and minimizing the overhead of stack operations. This leads
to the following number of layers of Karatsuba: 2, 3, 4, 4, 4, and 4 for the cases p2048,
p4096, p5120, p6144, p8192, and p9216, respectively. To further enhance the speed of
the implementation, the assembly code avoids function calls. By generating the assembly
code dynamically, the implementation can adapt to different prime sizes and adjust the
multiplication algorithm accordingly.

Squaring. For squaring, we take advantage of the fact that some partial products (aiaj

such that i ̸= j) only need to be calculated once, and then accumulated/used twice.
On the lowest level of Karatsuba, where the schoolbook multiplication takes place, we
implement a squaring function with the corresponding savings based on lazy doubling
method [LKP13] by adapting the assembly code of the squaring function of the GMP

16 Optimizations and Practicality of High-Security CSIDH

library. For a given n, the implemented method achieves the lower bound of n2−n
2 + n

required multiplications. Furthermore, we save additions on the higher levels of Karatsuba
by reusing calculated values. However, as shown in Table 4, due to the chosen breakout into
schoolbook multiplication and the number of available registers, the effort for dealing with
the carry chains only leads to a maximum speedup of 17%. Adding a layer of Karatsuba
to reduce the number of limbs for the schoolbook multiplication leads to a speedup at this
level. Overall, however, extra layers negate speed-ups gained from reducing limbs.

Table 4: Benchmarking results for multiplication and squaring for the Karatsuba approach.
Numbers are median clock cycles of 100000 runs on a Skylake CPU.

Prime multiplication squaring
p2048 1442 1230
p4096 4981 4431
p5120 8601 7990
p6144 10 210 9120
p8192 17 073 15 050
p9216 20 248 19 197

Montgomery reduction. For the cases p ∈ {p5120, p6144, p8192, p9216}, the reduction
is calculated according to the intermediate Montgomery reduction [BD21]. For this, we
use Montgomery-friendly primes of the form p = f ·

∏n
i=1 ℓi − 1 with the cofactor f = 2e2

where e2 ≥ log2(p)/2. Table 1 shows the respective values for f and accordingly e2 for all
chosen prime numbers.

As shown in Algorithm 3, the basic idea of this reduction is to perform two Montgomery-
reduction steps modulo 2e2 instead of n steps modulo 2w as in the standard Montgomery
reduction. Based on this reduction approach, we can further apply the available Karatsuba-
based multiplication when calculating q0 ×α and q1 ×α (see Line 2 and 4 in Algorithm 3),
leading to further speedups.

Algorithm 3 Intermediate Montgomery reduction for p = 2e2α− 1 with e2 ≥ log2(p)/2
Input: 0 ≤ a < 2ep
Output: r = a2−2e2 mod p and 0 ≤ r < p

1: q0 ← a mod 2e2

2: r0 ← (a− q0)/2e2 + q0 × α ▷ 1st reduction
3: q1 ← r0 mod 2e2

4: r ← (r0 − q1)/2e2 + q1 × α ▷ 2nd reduction
5: r′ ← r − p + 2e

6: if r′ ≥ 2e then
7: r ← r′ mod 2e

8: end if
9: return r

For the cases p ∈ {p2048, p4096}, the respective primes cannot fulfill the described
requirements. Hence, we implement the word version of the Montgomery reduction
from [BD21] for these cases. The complexity of Algorithm 4 is dominated by multiplications
by α in Line 4. Compared to the standard Montgomery reduction, this approach reduces
the number of limbs to be multiplied depending on the value of e2. We show the results
for the corresponding reduction in Table 3.

Campos et al. 17

Algorithm 4 Word version of the Montgomery reduction if p = 2e2α− 1
Input: 0 ≤ a < pβn

Output: r = aβ−n mod p and 0 ≤ r < p
1: r ← a
2: for i = 0 to n− 1 do
3: r0 ← r mod β
4: r ← (r − r0)/β + r0 × α2e2−w

5: end for
6: r′ ← r + (βn − p)
7: if r′ ≥ βn then
8: r ← r′ − β
9: end if

10: return r

5.3 Performance results
We demonstrate the performance increase due to the high-level improvements from Section 4
and the low-level improvements from Section 5.2 for dCSIDH and CTIDH in Table 5. We
compare our results to [Chá+22], the only other available implementation of CSIDH for
similar parameters listing performance numbers. For parameter sizes above p5120, our
implementation of dCSIDH is between 55% and 60% faster than SQALE (dummy-free),
and CTIDH consistently achieves a speed-up of almost 75% compared to SQALE (OAYT).
This excludes the significant speedup from VeriFast, as shown in Table 2.

Table 5: Benchmarking results for performing a group action for dCSIDH and CTIDH,
excluding key validation. Results for the dummy-free and OAYT version of [Chá+22]
added for comparison. Numbers are median clock cycles (in gigacycles) of 1024 executions
on a Skylake CPU.

p2048 p4096 p5120 p6144 p8192 p9216
dCSIDH 7.48 34.64 31.80 47.47 127.57 219.09
SQALE (dummy-free) – 39.35 73.57 117.57 322.57 475.64
CTIDH 2.21 11.11 11.26 17.13 43.65 68.78
SQALE (OAYT) – 23.21 44.56 74.88 199.15 292.41

In [Lon23], the authors proposed a novel approach for the computation of sums of
products over large prime fields achieving a significant performance impact. However, since
the primes in our work support very fast reductions, applying the approach from [Lon23]
would not gain a significant advantage. Further, a comparison of the performance is
unfortunately rather difficult due to the different underlying fields.

6 Non-Interactive Key Exchange in Protocols
Diffie–Hellman (DH) key exchange is probably the most well-known example of a NIKE
protocol, even if it is often used as a “simple” interactive key exchange. One such example
is TLS, where ephemeral DH key exchange is authenticated via a signature. This key
exchange can be replaced with a KEM, as shown in [Bos+15]. Experiments by Google
and Cloudflare [Bra16; Lan18; KV19] used the same approach.

However, in two scenarios the inherently interactive character of a KEM creates issues
for protocol designers. When used with long-term keys (and a suitable PKI), a NIKE allows
a user Alice to send an authenticated ciphertext to an offline user Bob. Signal’s X3DH

18 Optimizations and Practicality of High-Security CSIDH

handshake [MP16] is a notable example using this feature of NIKEs. Indeed, [Bre+20]
shows that a naive replacement of the DH operations by KEMs does not work.

In the early stages of the development of TLS 1.3, Krawczyk and Wee proposed
OPTLS [KW16], a variant that uses DH key exchange not only for ephemeral key exchange,
but also for authentication. Many elements of this proposal, made it into the eventual
RFC8446 [Res18]. Though the standard reverted to handshake signatures, the idea lives
on in an Internet Draft [RSW20].

As Kuhnen pointed out, OPTLS does use the non-interactive property of DH [Kuh18].
As part of the ephemeral key exchange, the client sends their ephemeral DH public key.
For authentication, the server takes this ephemeral key share and combines it with their
long-term DH key. The obtained shared secret is used to compute a MAC which is used
in place of the signature in the CertificateVerify message. This computation proves
the server’s possession of the long-term secret key corresponding to the public key in the
certificate. The client can compute the same shared secret by combining its ephemeral
secret DH key with the certified public key, and thus verify the MAC.

6.1 Post-Quantum TLS without signatures
In a naive instantiation of an OPTLS-like protocol with KEMs, we require an additional
round-trip. To compute the authentication message, the server needs to first receive the
ciphertext that was encapsulated against the long-term public key held in its certificate—
which the client can not send before having received it from the server. The KEMTLS
proposal by Schwabe, Stebila, and Wiggers avoids this issue partially by letting the client
already transmit data immediately after computing and sending the ciphertext to the
server [SSW20]. This relies on the fact that any keys derived from the shared secret
encapsulated to the server’s long term key are implicitly authenticated. KEMTLS has the
advantage of not having to compute any typically expensive and/or large post-quantum
signatures during the handshake protocol. Only the variant that assumes the client already
has the server’s public key, for example through caching, can achieve a protocol flow that
is similar to OPTLS and TLS 1.3 [SSW21]. In that flow, the server can send authenticated
data immediately on their first response to the client.

However, as CSIDH does provide post-quantum NIKE we can use it to instantiate
post-quantum OPTLS and avoid any online post-quantum signatures. Because OPTLS
immediately confirms the server’s authenticity, its handshake has the same number of
transmissions of messages as in TLS 1.3 and there is no need to rely on implicit authenti-
cation.

Integrating our implementations in OPTLS gives us an understanding of how CSIDH
affects the performance of real-world network protocols, which will typically feature similar
cryptographic operations and transmissions.

6.2 Benchmarking set-up

Integration into Rustls. To investigate the performance of OPTLS with CSIDH, we
integrate our optimized implementations into the implementation and the measurement
framework of the authors of KEMTLS. As a side effect of this work, we also provide a Rust
wrapper around our C implementations. We add OPTLS to the same modified version of
Rustls [Bir23] used to implement KEMTLS. This allows us to straightforwardly compare
to KEMTLS and TLS 1.3 handshakes instantiated with post-quantum primitives.

Group operations and caching ephemeral key generation. An OPTLS handshake
requires a large number of group operations in each handshake, namely:

1. Generation of the ephemeral key of the client;

Campos et al. 19

2. Generation of the ephemeral key of the server;

3. The server’s computation of the ephemeral shared secret;

4. The client’s computation of the ephemeral shared secret;

5. The server’s computation of the authentication shared secret; and

6. The client’s computation of the authentication shared secret.

Unfortunately, due to the order of the handshake messages and the requirements for
handshake encryption, most of these computations need to be done in-order and can
not really be parallelized. However, we can avoid the cost of CSIDH key generation by
implementing caching of ephemeral keys. This reduces the forward secrecy; but it emulates
a best-case scenario for CSIDH-based OPTLS in which the keys are generated “offline”,
outside the handshake context. We exclude all first TLS handshakes from clients and
servers from our measurements, to exclude this key generation time: in the pregen OPTLS
instances, all subsequent handshakes use the same public key material. In the ephemeral
OPTLS instances, we generate ephemeral keys in each handshake.

Note that because OPTLS combines the ephemeral and static keys, all need to use the
same algorithm, and we can not use a faster KEM for ephemeral key exchange.

Measurement setup. We run all TLS handshake experiments on a server with two Intel
Xeon Gold 6230 CPUs, each featuring 20 physical cores. This gives us 80 hyperthreaded
cores in total. For these experiments, we do not disable hyperthreading or frequency
scaling, as these features would also be enabled in production scenarios. We run 80 servers
and clients in parallel, as each pair of client and server roughly interleave their execution.
We collect 8000 measurements per experiment. Every 11 handshakes, we restart the
client and server, so that we measure many ephemeral keys even in the scenarios that use
ephemeral-key caching. We exclude the first handshake from the measurements to allow
for cache warm-up and ephemeral-key generation in the caching scenario.

As in the KEMTLS papers [SSW20; SSW21], we measure the performance of the
different TLS handshakes when run over two network environments: a low-latency 30.9 ms
round-trip time (RTT), 1000 Mbps and a high-latency 195.5 ms RTT, 10 Mbps network
connection. The latency of the former represents a continental, high-bandwidth connection,
while the latter represents a transatlantic connection.

6.3 Benchmarking results
In Table 6, we compare OPTLS with dCSIDH and CTIDH with the performance of
instantiations of KEMTLS and TLS 1.3.

Comparing the sizes of the handshakes, OPTLS requires fewer bytes on the wire, as it
only needs to transmit two ephemeral public keys and one static public key (and the CA
signature). KEMTLS requires an additional ciphertext, and TLS an additional signature.

In OPTLS, like in TLS 1.3, the client receives the server’s handshake completion message
ServerFinished (SFIN) first and then sends the ClientFinished (CFIN) message (and
its request) immediately after. In KEMTLS, SFIN and full server authentication is received
a full round-trip after CFIN is received. However, it is clear that the runtime requirements
of dCSIDH are almost insurmountable, even for the smallest parameters (p2048). Even
CTIDH, which is much more efficient, is orders of magnitude slower than the KEMTLS
and OPTLS instances. If the more conservative p4096 prime is required for NIST level 1
security, even CTIDH handshakes do not complete in under 30 seconds. Due to a better
reduction algorithm, the p5120 prime performs roughly on par with p4096, while providing
NIST level 2 security in the aggressive analysis.

20 Optimizations and Practicality of High-Security CSIDH

Table 6: Public key cryptography transmission sizes in bytes and time in seconds until
client receives and sends Finished messages for OPTLS, TLS 1.3 and KEMTLS.

Handshake latencies (RTT, link speed)
Transmission 30.9 ms, 1000 Mbps 195.5 ms, 10 Mbps
KEX Auth SFIN recv CFIN sent SFIN recv CFIN sent

OPTLS
(pregen)

dCSIDH p2048 544 938 24.468 24.468 24.288 24.288
CTIDH p2048 512 922 7.346 7.346 7.203 7.203
CTIDH p4096 1024 1178 36.321 36.321 36.299 36.299
CTIDH p5120 1280 1306 28.701 28.701 28.580 28.580

OPTLS
(ephemeral)

dCSIDH p2048 544 938 43.642 43.642 43.486 43.486
CTIDH p2048 512 922 10.042 10.042 9.882 9.882
CTIDH p4096 1024 1178 50.039 50.039 49.951 49.951
CTIDH p5120 1280 1306 42.383 42.383 42.163 42.163

TLS
Kyber512–Falcon512 1568 2229 0.064 0.064 0.428 0.428
Kyber512–Dilithium2 1568 4398 0.063 0.063 0.519 0.519
Kyber768–Falcon1024 2272 3739 0.065 0.065 0.497 0.497

KEMTLS Kyber512 1568 2234 0.094 0.063 0.593 0.396
Kyber768 2272 2938 0.094 0.063 0.597 0.400

All instantiations use Falcon-512 for the certificate authority; the CA public key is not transmitted. Bytes
necessary for authentication includes 666 bytes for the Falcon-512 CA signature on the server’s certificate.

As discussed for (KEM)TLS in [GW22], for constrained environments, such as 46 kbps
IoT networks, in certain scenarios the transmission size can become the dominant factor
instead of computation time. However, with the results shown here, we expect the
environments in which CSIDH-based OPTLS instances are competitive to be very niche.
To overcome 7 seconds of computational latency, the network needs to take more than
7 seconds to transmit the additional data required for e.g. TLS 1.3 with Dilithium. This
suggests link speeds of less than 1 kilobyte per second. Additionally, these environments
often rely on microcontrollers that are much less performant than the Intel CPUs on which
we run our implementations.

Interestingly, the CSIDH experiments run on the high-latency, low-bandwidth networks
show slightly lower latencies than those on the high-bandwidth, low-latency network. We
suspect that this is due to an interaction with the TCP congestion control algorithm’s
transmission windows.

7 Conclusion and future work
In this paper, we presented low-level and high-level optimizations for CSIDH at larger
parameter sets, focusing on deterministic and dummy-free behavior in dCSIDH, and on
speed in CTIDH. These optimizations achieve impressive results on their own; dCSIDH is
almost twice as fast as the state-of-the-art, and CTIDH, dropping determinism, is again
three times as fast as dCSIDH. Further optimizations of the field arithmetic, i.e., by
utilizing the vector processing capabilities of modern processors, might lead to additional
speed-ups.

Nevertheless, when integrated into the latency-sensitive TLS variant OPTLS, both
implementations still have too-large handshake latency in comparison to TLS or KEMTLS
using lattice-based KEMs. We conclude that the reduced number of roundtrips, through
the non-interactive nature of CSIDH, does not make up for the performance hit.

However, for truly non-interactive, latency-insensitive settings that cannot replace
NIKEs by KEMs, the performance of CSIDH may be sufficient even at high-security levels.
This includes, for example, using CSIDH in X3DH [MP16] for post-quantum Signal, as it
would incur a delay of seconds only when sending the first message to another user (who
might be offline, thus ruling out KEM-based interactive approaches).

Campos et al. 21

Unless significant performance improvements occur for CSIDH in large parameter sets,
or the quantum-security debate shifts in favor of 512- to 1024-bits parameter sets, we
conclude that CSIDH is unlikely to be practical in real-world applications, outside of those
that specifically require NIKEs.

It will be interesting to investigate how CSIDH and Swoosh—the only two current
proposals for a post-quantum NIKE—compare in a protocol context. There is no full
implementation of Swoosh, yet; the cycle counts reported in [Gaj+24] are for the passively-
secure core component only. Based on the available figures it seems likely that Swoosh
outperforms CSIDH with the large parameters we consider in this paper computationally,
but that key sizes are much smaller for CSIDH.

References
[ACR22] Gora Adj, Jesús-Javier Chi-Domínguez, and Francisco Rodríguez-Henríquez.

“Karatsuba-based square-root Vélu’s formulas applied to two isogeny-based
protocols”. In: Journal of Cryptographic Engineering (2022). doi: 10.1007/s13
389-022-00293-y. url: https://doi.org/10.1007/s13389-022-00293-y.

[AJL17] Reza Azarderakhsh, David Jao, and Christopher Leonardi. “Post-Quantum
Static-Static Key Agreement Using Multiple Protocol Instances”. In: SAC
2017. Ed. by Carlisle Adams and Jan Camenisch. Vol. 10719. LNCS. Springer,
Heidelberg, Aug. 2017, pp. 45–63. doi: 10.1007/978-3-319-72565-9_3.

[Ang+22] Yawning Angel, Benjamin Dowling, Andreas Hülsing, Peter Schwabe, and
Florian Weber. “Post Quantum Noise”. In: ACM CCS 2022. Ed. by Heng
Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi. ACM Press, Nov. 2022,
pp. 97–109. doi: 10.1145/3548606.3560577.

[Ban+21] Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung Chou, Tanja
Lange, Michael Meyer, Benjamin Smith, and Jana Sotáková. “CTIDH: faster
constant-time CSIDH”. In: IACR TCHES 2021.4 (2021). https://tches.iac
r.org/index.php/TCHES/article/view/9069, pp. 351–387. issn: 2569-2925.
doi: 10.46586/tches.v2021.i4.351-387.

[Ban+23] Gustavo Banegas, Juliane Krämer, Tanja Lange, Michael Meyer, Lorenz
Panny, Krijn Reijnders, Jana Sotáková, and Monika Trimoska. “Disorientation
Faults in CSIDH”. In: Advances in Cryptology - EUROCRYPT 2023. Ed. by
Carmit Hazay and Martijn Stam. Vol. 14008. LNCS. 2023, pp. 310–342. doi:
10.1007/978-3-031-30589-4_11. url: https://doi.org/10.1007/978-
3-031-30589-4%5C_11.

[BD21] Jean-Claude Bajard and Sylvain Duquesne. “Montgomery-friendly primes and
applications to cryptography”. In: Journal of Cryptographic Engineering 11.4
(Nov. 2021), pp. 399–415. doi: 10.1007/s13389-021-00260-z.

[Ber+19] Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny.
“Quantum Circuits for the CSIDH: Optimizing Quantum Evaluation of Iso-
genies”. In: EUROCRYPT 2019, Part II. Ed. by Yuval Ishai and Vincent
Rijmen. Vol. 11477. LNCS. Springer, Heidelberg, May 2019, pp. 409–441. doi:
10.1007/978-3-030-17656-3_15.

[Ber+20] Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith.
“Faster computation of isogenies of large prime degree”. In: ANTS XIV –
Proceedings of the Fourteenth Algorithmic Number Theory Symposium. htt
ps://msp.org/obs/2020/4-1/obs-v4-n1-p04-p.pdf. MSP, 2020. url:
https://msp.org/obs/2020/4-1/obs-v4-n1-p04-p.pdf.

https://doi.org/10.1007/s13389-022-00293-y
https://doi.org/10.1007/s13389-022-00293-y
https://doi.org/10.1007/s13389-022-00293-y
https://doi.org/10.1007/978-3-319-72565-9_3
https://doi.org/10.1145/3548606.3560577
https://tches.iacr.org/index.php/TCHES/article/view/9069
https://tches.iacr.org/index.php/TCHES/article/view/9069
https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.1007/978-3-031-30589-4_11
https://doi.org/10.1007/978-3-031-30589-4%5C_11
https://doi.org/10.1007/978-3-031-30589-4%5C_11
https://doi.org/10.1007/s13389-021-00260-z
https://doi.org/10.1007/978-3-030-17656-3_15
https://msp.org/obs/2020/4-1/obs-v4-n1-p04-p.pdf
https://msp.org/obs/2020/4-1/obs-v4-n1-p04-p.pdf
https://msp.org/obs/2020/4-1/obs-v4-n1-p04-p.pdf

22 Optimizations and Practicality of High-Security CSIDH

[BGS22] Gustavo Banegas, Valerie Gilchrist, and Benjamin Smith. “Efficient super-
singularity testing over Fp and CSIDH key validation”. In: Mathematical
Cryptology 2.1 (Oct. 2022), pp. 21–35. url: https://journals.flvc.org/m
athcryptology/article/view/132125.

[Bir23] Joseph Birr-Pixton. A modern TLS library in Rust. https://github.com/ru
stls/rustls. 2023.

[BKV19] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. “CSI-FiSh:
Efficient Isogeny Based Signatures Through Class Group Computations”. In:
ASIACRYPT 2019, Part I. Ed. by Steven D. Galbraith and Shiho Moriai.
Vol. 11921. LNCS. Springer, Heidelberg, Dec. 2019, pp. 227–247. doi: 10.100
7/978-3-030-34578-5_9.

[Bos+15] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. “Post-
Quantum Key Exchange for the TLS Protocol from the Ring Learning with
Errors Problem”. In: 2015 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, May 2015, pp. 553–570. doi: 10.1109/SP.2015.40.

[Bra16] Matt Braithwaite. Experimenting with Post-Quantum Cryptography. Google
Online Security Blog. https://security.googleblog.com/2016/07/exper
imenting-with-post-quantum.html. 2016. (Visited on 12/20/2021).

[Bre+20] Jacqueline Brendel, Marc Fischlin, Felix Günther, Christian Janson, and Dou-
glas Stebila. “Towards Post-Quantum Security for Signal’s X3DH Handshake”.
In: SAC 2020. Ed. by Orr Dunkelman, Michael J. Jacobson Jr., and Colin
O’Flynn. Vol. 12804. LNCS. Springer, Heidelberg, Oct. 2020, pp. 404–430.
doi: 10.1007/978-3-030-81652-0_16.

[BS20] Xavier Bonnetain and André Schrottenloher. “Quantum Security Analysis of
CSIDH”. In: EUROCRYPT 2020, Part II. Ed. by Anne Canteaut and Yuval
Ishai. Vol. 12106. LNCS. Springer, Heidelberg, May 2020, pp. 493–522. doi:
10.1007/978-3-030-45724-2_17.

[Cam+20] Fabio Campos, Matthias J. Kannwischer, Michael Meyer, Hiroshi Onuki, and
Marc Stöttinger. “Trouble at the CSIDH: Protecting CSIDH with Dummy-
Operations Against Fault Injection Attacks”. In: 2020 Workshop on Fault
Detection and Tolerance in Cryptography (FDTC). IEEE, 2020, pp. 57–65.
doi: 10.1109/FDTC51366.2020.00015.

[Cam+22] Fabio Campos, Michael Meyer, Krijn Reijnders, and Marc Stöttinger. Patient
Zero and Patient Six: Zero-Value and Correlation Attacks on CSIDH and
SIKE. IACR Cryptology ePrint Archive, Report 2022/904. To appear in SAC
2022. 2022. url: https://eprint.iacr.org/2022/904.

[Cas+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost
Renes. “CSIDH: An Efficient Post-Quantum Commutative Group Action”. In:
ASIACRYPT 2018, Part III. Ed. by Thomas Peyrin and Steven Galbraith.
Vol. 11274. LNCS. Springer, Heidelberg, Dec. 2018, pp. 395–427. doi: 10.100
7/978-3-030-03332-3_15.

[Cas+22] Wouter Castryck, Thomas Decru, Marc Houben, and Frederik Vercauteren.
“Horizontal Racewalking Using Radical Isogenies”. In: ASIACRYPT 2022,
Part II. Ed. by Shweta Agrawal and Dongdai Lin. Vol. 13792. LNCS. Springer,
Heidelberg, Dec. 2022, pp. 67–96. doi: 10.1007/978-3-031-22966-4_3.

[CD20] Wouter Castryck and Thomas Decru. “CSIDH on the Surface”. In: Post-
Quantum Cryptography - 11th International Conference, PQCrypto 2020. Ed.
by Jintai Ding and Jean-Pierre Tillich. Springer, Heidelberg, 2020, pp. 111–129.
doi: 10.1007/978-3-030-44223-1_7.

https://journals.flvc.org/mathcryptology/article/view/132125
https://journals.flvc.org/mathcryptology/article/view/132125
https://github.com/rustls/rustls
https://github.com/rustls/rustls
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1109/SP.2015.40
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://doi.org/10.1007/978-3-030-81652-0_16
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1109/FDTC51366.2020.00015
https://eprint.iacr.org/2022/904
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-031-22966-4_3
https://doi.org/10.1007/978-3-030-44223-1_7

Campos et al. 23

[CD23] Wouter Castryck and Thomas Decru. “An Efficient Key Recovery Attack on
SIDH”. In: EUROCRYPT 2023, Part V. Ed. by Carmit Hazay and Martijn
Stam. Vol. 14008. LNCS. Springer, Heidelberg, Apr. 2023, pp. 423–447. doi:
10.1007/978-3-031-30589-4_15.

[CDV20] Wouter Castryck, Thomas Decru, and Frederik Vercauteren. “Radical Isoge-
nies”. In: ASIACRYPT 2020, Part II. Ed. by Shiho Moriai and Huaxiong
Wang. Vol. 12492. LNCS. Springer, Heidelberg, Dec. 2020, pp. 493–519. doi:
10.1007/978-3-030-64834-3_17.

[Cer+19] Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier Chi-Domínguez,
Luca De Feo, Francisco Rodríguez-Henríquez, and Benjamin Smith. “Stronger
and Faster Side-Channel Protections for CSIDH”. In: LATINCRYPT 2019.
Ed. by Peter Schwabe and Nicolas Thériault. Vol. 11774. LNCS. Springer,
Heidelberg, Oct. 2019, pp. 173–193. doi: 10.1007/978-3-030-30530-7_9.

[Chá+22] Jorge Chávez-Saab, Jesús-Javier Chi-Domínguez, Samuel Jaques, and Fran-
cisco Rodríguez-Henríquez. “The SQALE of CSIDH: sublinear Vélu quantum-
resistant isogeny action with low exponents”. In: Journal of Cryptographic
Engineering 12.3 (Sept. 2022), pp. 349–368. doi: 10.1007/s13389-021-0027
1-w.

[CLN16] Craig Costello, Patrick Longa, and Michael Naehrig. “Efficient Algorithms
for Supersingular Isogeny Diffie-Hellman”. In: CRYPTO 2016, Part I. Ed. by
Matthew Robshaw and Jonathan Katz. Vol. 9814. LNCS. Springer, Heidelberg,
Aug. 2016, pp. 572–601. doi: 10.1007/978-3-662-53018-4_21.

[Cos+17] Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes,
and David Urbanik. “Efficient Compression of SIDH Public Keys”. In: EU-
ROCRYPT 2017, Part I. Ed. by Jean-Sébastien Coron and Jesper Buus
Nielsen. Vol. 10210. LNCS. Springer, Heidelberg, Apr. 2017, pp. 679–706. doi:
10.1007/978-3-319-56620-7_24.

[CR22a] Jesús-Javier Chi-Domínguez and Krijn Reijnders. “Fully Projective Radical
Isogenies in Constant-Time”. In: CT-RSA 2022. Ed. by Steven D. Galbraith.
Vol. 13161. LNCS. Springer, Heidelberg, Mar. 2022, pp. 73–95. doi: 10.1007
/978-3-030-95312-6_4.

[CR22b] Jesús-Javier Chi-Domínguez and Francisco Rodríguez-Henríquez. “Optimal
strategies for CSIDH”. In: Adv. Math. Commun. 16.2 (2022), pp. 383–411. doi:
10.3934/amc.2020116. url: https://doi.org/10.3934/amc.2020116.

[dKoc18] Bor de Kock. A non-interactive key exchange based on ring-learning with
errors. Master’s thesis, Eindhoven University of Technology. 2018.

[Dol18] Javad Doliskani. “On division polynomial PIT and supersingularity”. In:
Applicable Algebra in Engineering, Communication and Computing 29.5 (2018),
pp. 393–407. doi: 10.1007/S00200-018-0349-Z.

[Gaj+24] Phillip Gajland, Bor de Kock, Miguel Quaresma, Giulio Malavolta, and Peter
Schwabe. “Swoosh: Practical Lattice-Based Non-Interactive Key Exchange”.
In: Proceedings of the 33rd USENIX Security Symposium. https://eprint.i
acr.org/2023/271. USENIX Association, 2024, to appear.

[Gal+16] Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. “On the
Security of Supersingular Isogeny Cryptosystems”. In: ASIACRYPT 2016,
Part I. Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10031. LNCS.
Springer, Heidelberg, Dec. 2016, pp. 63–91. doi: 10.1007/978-3-662-53887
-6_3.

https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-030-64834-3_17
https://doi.org/10.1007/978-3-030-30530-7_9
https://doi.org/10.1007/s13389-021-00271-w
https://doi.org/10.1007/s13389-021-00271-w
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1007/978-3-030-95312-6_4
https://doi.org/10.1007/978-3-030-95312-6_4
https://doi.org/10.3934/amc.2020116
https://doi.org/10.3934/amc.2020116
https://doi.org/10.1007/S00200-018-0349-Z
https://eprint.iacr.org/2023/271
https://eprint.iacr.org/2023/271
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3

24 Optimizations and Practicality of High-Security CSIDH

[GW22] Ruben Gonzalez and Thom Wiggers. “KEMTLS vs. Post-quantum TLS:
Performance on Embedded Systems”. In: Security, Privacy, and Applied
Cryptography Engineering. Ed. by Lejla Batina, Stjepan Picek, and Mainack
Mondal. Cham: Springer Nature Switzerland, 2022, pp. 99–117. isbn: 978-3-
031-22829-2. doi: 10.1007/978-3-031-22829-2. url: https://thomwigger
s.nl/publication/kemtls-embedded/.

[Ham21] Mike Hamburg. Computing the Jacobi symbol using Bernstein-Yang. Cryptol-
ogy ePrint Archive, Report 2021/1271. https://eprint.iacr.org/2021/12
71. 2021.

[Hut+20] Aaron Hutchinson, Jason T. LeGrow, Brian Koziel, and Reza Azarderakhsh.
“Further Optimizations of CSIDH: A Systematic Approach to Efficient Strate-
gies, Permutations, and Bound Vectors”. In: ACNS 20, Part I. Ed. by Mauro
Conti, Jianying Zhou, Emiliano Casalicchio, and Angelo Spognardi. Vol. 12146.
LNCS. Springer, Heidelberg, Oct. 2020, pp. 481–501. doi: 10.1007/978-3-0
30-57808-4_24.

[JD11] David Jao and Luca De Feo. “Towards Quantum-Resistant Cryptosystems
from Supersingular Elliptic Curve Isogenies”. In: Post-Quantum Cryptography
- 4th International Workshop, PQCrypto 2011. Ed. by Bo-Yin Yang. Springer,
Heidelberg, Nov. 2011, pp. 19–34. doi: 10.1007/978-3-642-25405-5_2.

[KO63] Anatolii Karatsuba and Yuri Ofman. “Multiplication of multidigit numbers
on automata”. In: Soviet Physics Doklady 7 (1963). Translated from Doklady
Akademii Nauk SSSR, Vol. 145, No. 2, pp. 293–294, July 1962., pp. 595–596.

[Kuh18] Wouter Kuhnen. “OPTLS revisited”. https://www.ru.nl/publish/pages
/769526/thesis-final.pdf. MA thesis. Radboud University, 2018.

[Kup13] Greg Kuperberg. “Another Subexponential-time Quantum Algorithm for the
Dihedral Hidden Subgroup Problem”. In: 8th Conference on the Theory of
Quantum Computation, Communication and Cryptography. Ed. by Simone
Severini and Fernando G. S. L. Brandão. Vol. 22. LIPIcs 22. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2013, pp. 20–34. doi: 10.4230/LIPIcs
.TQC.2013.20.

[KV19] Kris Kwiatkowski and Luke Valenta. The TLS Post-Quantum Experiment.
Cloudflare blog. https://blog.cloudflare.com/the-tls-post-quantum-
experiment/. 2019. (Visited on 01/06/2022).

[KW16] Hugo Krawczyk and Hoeteck Wee. “The OPTLS Protocol and TLS 1.3”. In:
2016 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE,
2016, pp. 81–96. doi: 10.1109/EuroSP.2016.18.

[Lan18] Adam Langley. CECPQ2. ImperialViolet blog. https://www.imperialviole
t.org/2018/12/12/cecpq2.html. 2018. (Visited on 12/20/2021).

[LH20] Jason LeGrow and Aaron Hutchinson. An Analysis of Fault Attacks on CSIDH.
Cryptology ePrint Archive, Report 2020/1006. https://eprint.iacr.org/2
020/1006. 2020.

[LKP13] Younho Lee, Il-Hee Kim, and Yongsu Park. “Improved multi-precision squaring
for low-end RISC microcontrollers”. In: J. Syst. Softw. 86.1 (2013), pp. 60–71.
doi: 10.1016/j.jss.2012.06.074. url: https://doi.org/10.1016/j.jss
.2012.06.074.

[Lon23] Patrick Longa. “Efficient Algorithms for Large Prime Characteristic Fields
and Their Application to Bilinear Pairings”. In: IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2023.3 (2023), pp. 445–472. doi: 10.46586/tches.v2023.i3.4
45-472. url: https://doi.org/10.46586/tches.v2023.i3.445-472.

https://doi.org/10.1007/978-3-031-22829-2
https://thomwiggers.nl/publication/kemtls-embedded/
https://thomwiggers.nl/publication/kemtls-embedded/
https://eprint.iacr.org/2021/1271
https://eprint.iacr.org/2021/1271
https://doi.org/10.1007/978-3-030-57808-4_24
https://doi.org/10.1007/978-3-030-57808-4_24
https://doi.org/10.1007/978-3-642-25405-5_2
https://www.ru.nl/publish/pages/769526/thesis-final.pdf
https://www.ru.nl/publish/pages/769526/thesis-final.pdf
https://doi.org/10.4230/LIPIcs.TQC.2013.20
https://doi.org/10.4230/LIPIcs.TQC.2013.20
https://blog.cloudflare.com/the-tls-post-quantum-experiment/
https://blog.cloudflare.com/the-tls-post-quantum-experiment/
https://doi.org/10.1109/EuroSP.2016.18
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://eprint.iacr.org/2020/1006
https://eprint.iacr.org/2020/1006
https://doi.org/10.1016/j.jss.2012.06.074
https://doi.org/10.1016/j.jss.2012.06.074
https://doi.org/10.1016/j.jss.2012.06.074
https://doi.org/10.46586/tches.v2023.i3.445-472
https://doi.org/10.46586/tches.v2023.i3.445-472
https://doi.org/10.46586/tches.v2023.i3.445-472

Campos et al. 25

[Lyu+22] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,
Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-DILITHIUM. Tech.
rep. available at https://csrc.nist.gov/Projects/post-quantum-crypt
ography/selected-algorithms-2022. 2022.

[Lyu17] Vadim Lyubashevsky. Converting NewHope/LWE key exchange to a Diffe-
Hellman-like algorithm. Crypto Stack Exchange. [Online:] https://crypto.s
tackexchange.com/questions/48146/converting-newhope-lwe-key-exc
hange-to-a-diffe-hellman-like-algorithm. 2017. url: https://crypt
o.stackexchange.com/questions/48146/converting-newhope-lwe-key-
exchange-to-a-diffe-hellman-like-algorithm (visited on 06/10/2017).

[Mai+23] Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and Ben-
jamin Wesolowski. “A Direct Key Recovery Attack on SIDH”. In: EURO-
CRYPT 2023, Part V. Ed. by Carmit Hazay and Martijn Stam. Vol. 14008.
LNCS. Springer, Heidelberg, Apr. 2023, pp. 448–471. doi: 10.1007/978-3-0
31-30589-4_16.

[MCR19] Michael Meyer, Fabio Campos, and Steffen Reith. “On Lions and Elligators:
An Efficient Constant-Time Implementation of CSIDH”. In: Post-Quantum
Cryptography - 10th International Conference, PQCrypto 2019. Ed. by Jintai
Ding and Rainer Steinwandt. Springer, Heidelberg, 2019, pp. 307–325. doi:
10.1007/978-3-030-25510-7_17.

[MOT20] Tomoki Moriya, Hiroshi Onuki, and Tsuyoshi Takagi. “How to Construct
CSIDH on Edwards Curves”. In: CT-RSA 2020. Ed. by Stanislaw Jarecki.
Vol. 12006. LNCS. Springer, Heidelberg, Feb. 2020, pp. 512–537. doi: 10.100
7/978-3-030-40186-3_22.

[MP16] Moxie Marlinspike and Trevor Perrin. The X3DH Key Agreement Protocol.
Signal Specifications. 2016. url: https://signal.org/docs/specificatio
ns/x3dh/ (visited on 01/04/2022).

[MR18] Michael Meyer and Steffen Reith. “A Faster Way to the CSIDH”. In: IN-
DOCRYPT 2018. Ed. by Debrup Chakraborty and Tetsu Iwata. Vol. 11356.
LNCS. Springer, Heidelberg, Dec. 2018, pp. 137–152. doi: 10.1007/978-3-0
30-05378-9_8.

[Nat17] National Institute of Standards and Technology. Post-Quantum Cryptography
Standardization. 2017. url: https://csrc.nist.gov/Projects/post-quan
tum-cryptography/post-quantum-cryptography-standardization.

[Nat23] National Institute of Standards and Technology. Security Requirements for
Cryptographic Modules. Tech. rep. Washington, D.C., 2023. doi: 10.6028
/NIST.FIPS.203.ipd.

[Onu+19] Hiroshi Onuki, Yusuke Aikawa, Tsutomu Yamazaki, and Tsuyoshi Takagi.
“(Short Paper) A Faster Constant-Time Algorithm of CSIDH Keeping Two
Points”. In: IWSEC 19. Ed. by Nuttapong Attrapadung and Takeshi Yagi.
Vol. 11689. LNCS. Springer, Heidelberg, Aug. 2019, pp. 23–33. doi: 10.1007
/978-3-030-26834-3_2.

[Pei20] Chris Peikert. “He Gives C-Sieves on the CSIDH”. In: EUROCRYPT 2020,
Part II. Ed. by Anne Canteaut and Yuval Ishai. Vol. 12106. LNCS. Springer,
Heidelberg, May 2020, pp. 463–492. doi: 10.1007/978-3-030-45724-2_16.

[Pre+22] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim
Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. FALCON. Tech. rep. available at https://csrc
.nist.gov/Projects/post-quantum-cryptography/selected-algorithm
s-2022. 2022.

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://crypto.stackexchange.com/questions/48146/converting-newhope-lwe-key-exchange-to-a-diffe-hellman-like-algorithm
https://crypto.stackexchange.com/questions/48146/converting-newhope-lwe-key-exchange-to-a-diffe-hellman-like-algorithm
https://crypto.stackexchange.com/questions/48146/converting-newhope-lwe-key-exchange-to-a-diffe-hellman-like-algorithm
https://crypto.stackexchange.com/questions/48146/converting-newhope-lwe-key-exchange-to-a-diffe-hellman-like-algorithm
https://crypto.stackexchange.com/questions/48146/converting-newhope-lwe-key-exchange-to-a-diffe-hellman-like-algorithm
https://crypto.stackexchange.com/questions/48146/converting-newhope-lwe-key-exchange-to-a-diffe-hellman-like-algorithm
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-3-030-25510-7_17
https://doi.org/10.1007/978-3-030-40186-3_22
https://doi.org/10.1007/978-3-030-40186-3_22
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/x3dh/
https://doi.org/10.1007/978-3-030-05378-9_8
https://doi.org/10.1007/978-3-030-05378-9_8
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.1007/978-3-030-26834-3_2
https://doi.org/10.1007/978-3-030-26834-3_2
https://doi.org/10.1007/978-3-030-45724-2_16
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

26 Optimizations and Practicality of High-Security CSIDH

[Res18] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. IETF
RFC 8446. https://rfc-editor.org/rfc/rfc8446.txt. 2018.

[Rob23] Damien Robert. “Breaking SIDH in Polynomial Time”. In: EURO-
CRYPT 2023, Part V. Ed. by Carmit Hazay and Martijn Stam. Vol. 14008.
LNCS. Springer, Heidelberg, Apr. 2023, pp. 472–503. doi: 10.1007/978-3-0
31-30589-4_17.

[RSW20] Eric Rescorla, Nick Sullivan, and Christopher A. Wood. Semi-Static Diffie-
Hellman Key Establishment for TLS 1.3. Internet-Draft. Work in Progress.
Mar. 2020. url: https://datatracker.ietf.org/doc/draft-ietf-tls-s
emistatic-dh/01/.

[SSW20] Peter Schwabe, Douglas Stebila, and Thom Wiggers. “Post-Quantum TLS
Without Handshake Signatures”. In: ACM CCS 2020. Ed. by Jay Ligatti,
Xinming Ou, Jonathan Katz, and Giovanni Vigna. ACM Press, Nov. 2020,
pp. 1461–1480. doi: 10.1145/3372297.3423350.

[SSW21] Peter Schwabe, Douglas Stebila, and Thom Wiggers. “More Efficient Post-
quantum KEMTLS with Pre-distributed Public Keys”. In: ESORICS 2021,
Part I. Ed. by Elisa Bertino, Haya Shulman, and Michael Waidner. Vol. 12972.
LNCS. Springer, Heidelberg, Oct. 2021, pp. 3–22. doi: 10.1007/978-3-030-
88418-5_1.

[Vél71] Jacques Vélu. “Isogénies entre courbes elliptiques”. In: Comptes Rendus de
l’Académie des Sciences de Paris, Séries A 273 (1971), pp. 238–241.

[vW99] Paul C. van Oorschot and Michael J. Wiener. “Parallel Collision Search with
Cryptanalytic Applications”. In: Journal of Cryptology 12.1 (Jan. 1999), pp. 1–
28. doi: 10.1007/PL00003816.

[WR22] Bas Westerbaan and Cefan Daniel Rubin. Defending against future threats:
Cloudflare goes post-quantum. Cloudflare blog. https://blog.cloudflare.c
om/post-quantum-for-all/. 2022.

https://rfc-editor.org/rfc/rfc8446.txt
https://doi.org/10.1007/978-3-031-30589-4_17
https://doi.org/10.1007/978-3-031-30589-4_17
https://datatracker.ietf.org/doc/draft-ietf-tls-semistatic-dh/01/
https://datatracker.ietf.org/doc/draft-ietf-tls-semistatic-dh/01/
https://doi.org/10.1145/3372297.3423350
https://doi.org/10.1007/978-3-030-88418-5_1
https://doi.org/10.1007/978-3-030-88418-5_1
https://doi.org/10.1007/PL00003816
https://blog.cloudflare.com/post-quantum-for-all/
https://blog.cloudflare.com/post-quantum-for-all/

	Introduction
	Preliminaries
	NIKEs vs. KEMs
	The CSIDH NIKE
	CTIDH
	Quantum security

	Proposed instantiations of CSIDH
	The choice of p
	Parameters for dummy-free, deterministic dCSIDH
	Parameters for CTIDH

	Optimizing dCSIDH and CTIDH
	Supersingularity verification
	Optimized dCSIDH public keys

	Implementation
	Low-level approaches for the field arithmetic layer
	Optimized field arithmetic using MULX and Karatsuba
	Performance results

	Non-Interactive Key Exchange in Protocols
	Post-Quantum TLS without signatures
	Benchmarking set-up
	Benchmarking results

	Conclusion and future work
	References

